| 研究生: |
曾柏裕 Tseng, Bo-Yu |
|---|---|
| 論文名稱: |
選擇性雷射燒結(SLS)溫度及孔隙性之研究 A study of the sintering temperature and porosity in selective laser sintering(SLS) |
| 指導教授: |
林震銘
Lin, Jehn-ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 雷射燒結 、粉末預置厚度 、孔隙性 |
| 外文關鍵詞: | laser sintering, preset powder thickness, porosity |
| 相關次數: | 點閱:84 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討選擇性雷射燒結(SLS),於不同的預置粉末厚度下,微觀組織的差異及孔隙率之探討。藉由初始一預置粉末厚度,並將移動之雷射光熱源施加於粉末表面上進行掃描加工。數值分析部分是利用有限元素分析軟體—ANSYS以熱機非耦合之方式進行模擬,模擬掃描路徑移動之軌跡,並探討於轉角點處時,不同的雷射功率、不同的粉末預置厚度及不同的移動速度下於轉角點及掃描線段上之溫度變化。
實驗方面以連續式波長1064 nm 之Nd-YAG雷射加熱以固定比例4:1(不銹鋼:紅銅)配置之金屬粉末,利用掃描振鏡配合控制軟體控制移動的軌跡及掃描間距。以雷射功率、掃瞄速度及預置粉末厚度為實驗參數,探討雷射燒結試件之表面形貌及孔隙性之影響。模擬與實驗結果顯示,隨著預置粉末厚度增厚、雷射功率增加及較低的掃瞄速度情況下,其雷射燒結試件之成形性越佳,但是如果掃描速度為0.5mm/s時,雷射燒結試件會有破裂及翹曲之狀況產生。
This study focused on selective laser sintering (SLS) at different preset powder thickness, temperature, microstructure and discuss difference of porosity. Scanning process is completed with a preset initial powder thickness and movement of laser light source applied to the surface of the powder. Numerical analysis used finite element analysis software –ANSYS to simulate the moving heat source with uncoupled thermo-mechanical approach, and discussed different laser power and preset power thickness at the sintering temperature under different moving speed at a corner point.
The experiments were performed by heating with Nd-YAG laser at a wavelength of 1064 nm at a fixed powder ratio of 4: 1 (stainless steel: copper), and using scanning galvanometer, incorporated with control software to control moving track and scanning pitch. Laser power, scanning speed and preset powder thickness were selected as experimental parameters, where the morphology of laser sintering specimen with porosity was inspected. Among the results of simulation and experiments, it suggested that the formability of the laser sintering specimen came up better under increasing preset thickness of powder and laser power, as well as lower scanning speed; however, if the scanning speed is up to 0.5mm/s, the laser sintering specimens would ruptured with warpage.
[1] Kruth J. P., Mercelis P., Van Vaerenbergh B., Froyen L., Rombouts M., “Binding mechanisms in selective laser sintering and selective laser melting”, Rapid prototyping journal, v11(1), p 26-36. 2005
[2] Kruth J. P., Wang X., Laoui T., Froyen L., “Lasers and materials in selective laser sintering”, Assembly Automation, v23(4), p 357-371. 2003
[3] Kruth J. P., Van Vaerenbergh B., Bonse J. E., Mcrren B., “Basic powder metallurgical aspects in selective metal powder sintering”, CIRP Annals-Manufacturing Technology, v45(1), p 183-186, 1996
[4] Song X. H., Shi Y. H., Song P. H., Wei Q. S., Li W., “Effects of the processing parameters on porosity of selective laser sintered aliphatic polycarbonate”, Advanced Materials Research, p 1000-1004, 2014
[5] Ning Y., Wong Y. S., Fuh J. Y. H., Loh H. T., “An approach to minimize build errors in direct metal laser sintering”, Automation Science and Engineering, IEEE Transactions on, v3(1), p 73-80, 2006
[6] Gao Y., Xing X., Zhang J., Luo N. N., Zheng H. Z., “Research on measurement method of selective laser sintering (SLS) transient temperature”, Optik-International Journal for Light and Electron Optics, v119(13), p 618-623, 2008
[7] Furumoto Tatsuaki, Ueda Tatsuaki, Tsukamoto Tatsuaki, Kobayashi Naoto, Hosokawa Akira, Abe Satoshi. “Study on laser consolidation of metal powder with Yb: fiber laser—Evaluation of line consolidation structure”, Journal of Materials Processing Technology, v209(18),p 5973-5980, 2009
[8] Li R. D., Shi Y. S., Liu J. H., Yao H. S., Zhang W. X., “Effects of processing parameters on the temperature field of selective laser melting metal powder”, Powder Metallurgy and Metal Ceramics, v48, p 186-195, 2009
[9] Li Y., Gu D. D., “Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder”, Materials & Design, v63, p 856-867,2014
[10] Randall M., “Sintering theory and practice”, WILEY –INTERSCIENCE, 1996
[11] Wang, X. C., Laoui T., Bonse J., Kruth J. P., Lauwers B., Froyen L., “Direct selective laser sintering of hard metal powders: experimental study and simulation”, The International Journal of Advanced Manufacturing Technology, v19(5), p 351-357, 2002
[12] 黃坤祥, “粉末冶金學”,中華民國粉體及粉末冶金協會, 2014
[13] 徐仁輝, “粉末冶金概論”,新文京開發出版有限公司, 2002
[14] 汪建民, 朱秋龍, “粉末冶金”,中華民國粉末冶金協會, 1991
[15] Adamson A. W., “Physical chemistry of surfaces”, Wiley Interscience, 1996
[16] 黃定加, “物理化學”, 高立圖書有限公司, 1997
[17] Szekely J., “Fluid flow phenomena in metals processing”, Elsevier, 2012
[18] Su Y., Li Z., Mills K. C., “Equation to estimate the surface tensions of stainless steels”, Journal of Materials Science, v40(9), p 2201-2205, 2005
[19] Hartland S., “Surface and interfacial tension: measurement, theory, and applications”, CRC Press, 2004.
[20] 鄭凱宇, “雷射披覆/燒結合成法之表面張力與孔隙現象研究”, 國立成功大
學機械工程所碩士論文, 2009
[21] 金重勳, “工程材料”, 復文書局, 1996
[22] Zhou Y. C., Zhu Z. M., Duan Z. P., “Thermal fracture characteristics induced by laser beam”, International journal of solids and structures, v38(32), p 5647-5660, 2001
[23] 顧宜, “複合材料”, 新文京開發出版股份有限公司, 2002
[24] 蔡耀庭, “脈衝式Nd-YAG雷射披覆預置金屬粉末/樹脂合成法之特性分析”,國立成功大學機械工程所碩士論文, 2010
[25] 陳信吉, “ANSYS入門”, 全華圖書股份有限公司, 2009
[26] 李坤洲, “雷射成型於薄板變形之分析及量測”, 國立成功大學機械工程所碩士論文, 2001
[27] Ren N. F., Jia L., Wang D., “Numerical Simulation Analysis on the Temperature Field in Indirect Selective Laser Sintering of 316L”, In Advanced Materials Research, p 209-213, 2013
[28] Yu H. Y., Sun D. B., Huang C. B., Yang D. G., “Technique and properties of sealing treatment on the electroless Ni-P alloy coatings”, Journal of Functional Materials, v32(3), p 262-263, 2001
[29] 周曉軍,莫錦秋,游紅武, “碳纖維複合材料分佈孔隙的超聲衰減檢測方法”,複合材料學報,v 14(3), p107-114, 1997
[30] 林怡男, “應力歷史對麓山帶沉積岩孔隙率及滲透率應力相依模式影響之 探討”,國立中央大學應用地質研究所碩士論文, 2009
[31] Martin William D., Putman Bradley J., Kaye Nigel B., “Using image analysis to measure the porosity distribution of a porous pavement”, Construction and Building Materials, v48, p 210-217, 2013