簡易檢索 / 詳目顯示

研究生: 雷壹鈞
Lei, Yi-Chun
論文名稱: 以微藻生產生質燃料製程之生命週期分析與經濟評估模型的建立與解析
Modeling and Analysis of Life Cycle Assessment and Economic Evaluation for Microalgae-to-Biofuel Systems
指導教授: 吳煒
Wu, Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 141
中文關鍵詞: 微藻生質燃料生質丁醇經濟評估生命週期評估
外文關鍵詞: Microalgae, Biofuel, Biobutanol, Economic Evaluation, Life Cycle Assessment
相關次數: 點閱:85下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了解決日益嚴重的環境問題,替代性能源的研究備受關注。微藻作為第三世代的生質能源,其因具有快速的生長率、高單位面積能量與其他相關優勢,極其適合作為替代性能源,故本論文建立以微藻為原物料生產生質燃料之製程並對其進行經濟評估與生命週期分析。
    本論文的第一部份為在Aspen Plus®當中設計以微藻醣類生產生質丁醇之製程,其製程當中主要反應為丙酮-丁醇-乙醇發酵,而製程規模設定為全球丁醇需求量之10%。因其製程設計之不同,可分為兩種製程模型,其一為高經濟價值模型,主要產物為丙酮、丁醇與乙醇;其二為低環境衝擊模型,主要產物為丙酮與丁醇,其中將不可販賣之乙醇燃燒作為公設使用。
    本論文的第二部分為將微藻培養與前處理製程和生質丁醇製程的相關數據進行經濟評估與獲利分析。微藻培養與前處理製程採用Benemann與Oswald(1966年)的計算方法,生質丁醇製程則採用J.M. Douglas(1988年)出版的化工程序設計書目中的係數估計法,來計算在經濟上的可行性。其中經濟模型的情境分為兩種,其一為土地購買,其二為土地租用。結果顯示高經濟價值模型的內部報酬率在土地購買的情況為22.37%,土地為租用則為23.48%;而低環境衝擊模型的內部報酬率在土地購買的情況為19.30%,土地租用則為19.97%。其結果可以顯示兩種模型在經濟上具有可行性,而高經濟價值模型更具有投資潛力。
    本論文的第三部分將微藻培養與前處理製程和生質燃料製程的相關數據進行生命週期分析並與傳統石化燃料比較。因在微藻培養與前處理製程當中具有多種方法可供選擇,故先尋找最低的能耗方法組合,並將其相關數據利用SiamPro®軟體進行計算。結果顯示在以微藻油脂生產生質柴油的製程上,因油脂生產的單位能耗較高,故其環境衝擊是大於傳統石化燃料;而以微藻醣類生產生質丁醇的製程中,其環境衝擊與傳統石化燃料相差不遠,其中低環境衝擊模型的環境衝擊更是低於傳統石化燃料;另外也顯示本研究的生質丁醇製程產物其環境衝擊也遠低於傳統石化合成方式的產品。其結果可知道本研究製程具有作為替代性能源的潛力。
    上述研究結果可了解以微藻醣類作為生產生質能源的原物料在經濟上與環境上都是極具潛力的;而以微藻油脂作為生質能源的原物料在環境上較不具優勢的,然而若是有更多低耗能的前處理製程方法可供選擇,可提升以生質柴油作為替代性能源之可行性。

    To solve the environmental pollution which is caused by the overuse of fossil fuels, bioenergy, as of the alternative energy sources, has been highly developed. Microalgae, as of the third generation of bioenergy, is commonly considered as the major raw material of the biofuel. First, it was completed a design of a biobutanol production process by ABE fermentation on Aspen Plus®, and because of the difference of the process design, it was classified the production processes as Lucrative model and Eco-friendly model. Second, it was evaluated the cost from the microalgae cultivation and pretreatment process to the production process of bio-butanol then was calculated the profitability of production processes. There were two scenarios in the profitability analysis, the first was the land purchase, the second was the land lease. The IRR results of the lucrative model were 22.37% in the scenario of the land purchase and 23.48% in the scenario of the land lease, respectively. The IRR results of the eco-friendly model were 19.30% in the scenario of the land purchase and 19.97% in the scenario of the land lease, respectively. Third, it was assessed the environmental impact of the microalgae cultivation and pretreatment process and the biofuel production process. As the result revealed, the impact of biodiesel was higher than the fossil fuel. On the other side, the impact of biobutanol was lower than the fossil fuel. Due to the above result mentioned, the microalgae carbohydrates, as of the raw material of the biofuel, were showed potential in the economy and environment.

    摘要 I Extended Abstract III 誌謝 XI 目錄 XIII 表目錄 XVII 圖目錄 XX 第1章 緒論 1 1.1 前言 1 1.2 研究動機與目標 3 1.3 研究架構 3 第2章 文獻回顧 6 2.1 微藻養殖以及前處理過程 6 2.1.1 簡介 6 2.1.2 培養(Cultivation) 7 2.1.3 收穫(Harvesting) 8 2.1.4 除水(Dewatering) 8 2.1.5 破藻(Cell Disruption) 8 2.1.6 萃取(Extraction) 9 2.1.7 水解(Hydrolysis) 10 2.2 生質丁醇 11 2.2.1 簡介 11 2.2.2 ABE發酵 12 2.3 生質柴油 14 2.3.1 簡介 14 2.3.2 轉酯化反應 14 2.3.3 製程設計 15 2.4 經濟分析 16 2.4.1 設備成本 16 2.4.2 操作成本 17 2.4.3 折舊 18 2.4.4 獲利分析 21 2.5 生命週期分析 24 2.5.1 生命週期簡介 24 2.5.2 目標範疇界定 (Goal and Scope Definition) 24 2.5.3 盤查分析 (Life Cycle Inventory Analysis) 26 2.5.4 衝擊評估 (Life Cycle Impact Assessment) 26 2.5.5 闡釋 (Interpretation) 27 第3章 生質丁醇製程建立與後續分析 28 3.1 發酵反應式回歸 28 3.2 發酵反應動力式回歸 29 3.3 熱力學校正 31 3.4 製程建立 37 3.4.1 發酵反應器 37 3.4.2 滲透蒸發器 37 3.4.3 氣提塔 39 3.4.4 高經濟價值模型:產物分離蒸餾塔 41 3.4.5 高經濟價值模型:丙酮–乙醇分離蒸餾塔 43 3.4.6 高經濟價值模型:丁醇–水分離蒸餾系統 45 3.4.7 低環境衝擊模型:丙酮分離蒸餾塔 47 3.4.8 低環境衝擊模型:乙醇分離蒸餾塔 49 3.4.9 低環境衝擊模型:丁醇–水分離蒸餾系統 51 3.4.10 低環境衝擊模型:乙醇燃燒器 53 3.5 製程結果 54 第4章 生質丁醇製程經濟分析評估 59 4.1 微藻培養與前處理製程經濟評估 59 4.1.1 微藻培養與前處理製程之總設備成本 59 4.1.2 微藻培養與前處理製程之總操作成本 61 4.2 ABE Fermentation製程經濟評估 62 4.2.1 ABE Fermentation製程設備成本估算 62 4.2.2 ABE Fermentation製程操作成本 69 4.3 獲利分析 74 4.4 結論 77 第5章 生質燃料之生命週期分析 79 5.1 微藻油脂平均能耗計算 79 5.2 微藻醣類平均能耗計算 87 5.3 生質柴油生命週期分析 92 5.4 生質柴油之靈敏度分析與相關比較 101 5.5 生質丁醇生命週期分析 108 5.6 生質丁醇之靈敏度分析與相關比較 118 5.7 附屬產品生命週期分析 124 5.8 結論 126 第6章 結論與建議 127 第7章 參考文獻 131 附錄(A):尋找微藻油脂最低能耗方法組合計算過程 135 附錄(B):尋找微藻醣類最低能耗方法組合計算過程 139

    [1] P. C. Hallenbeck and J. R. Benemann, "Biological hydrogen production; fundamentals and limiting processes," International Journal of Hydrogen Energy, vol. 27, no. 11-12, pp. 1185-1193, 2002.
    [2] S. N. Naik, V. V. Goud, P. K. Rout, and A. K. Dalai, "Production of first and second generation biofuels: a comprehensive review," Renewable and sustainable energy reviews, vol. 14, no. 2, pp. 578-597, 2010.
    [3] C.-Y. Chen, K.-L. Yeh, R. Aisyah, D.-J. Lee, and J.-S. Chang, "Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review," Bioresource technology, vol. 102, no. 1, pp. 71-81, 2011.
    [4] A. G. Silva et al., "Life cycle assessment of biomass production in microalgae compact photobioreactors," Gcb Bioenergy, vol. 7, no. 2, pp. 184-194, 2015.
    [5] M. Kumar and K. Gayen, "Developments in biobutanol production: new insights," Applied Energy, vol. 88, no. 6, pp. 1999-2012, 2011.
    [6] L. Brennan and P. Owende, "Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products," Renewable and sustainable energy reviews, vol. 14, no. 2, pp. 557-577, 2010.
    [7] L. B. Brentner, M. J. Eckelman, and J. B. Zimmerman, "Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel," Environmental science & technology, vol. 45, no. 16, pp. 7060-7067, 2011.
    [8] M. K. Weschler, W. J. Barr, W. F. Harper, and A. E. Landis, "Process energy comparison for the production and harvesting of algal biomass as a biofuel feedstock," Bioresource technology, vol. 153, pp. 108-115, 2014.
    [9] J. R. McMillan, I. A. Watson, M. Ali, and W. Jaafar, "Evaluation and comparison of algal cell disruption methods: microwave, waterbath, blender, ultrasonic and laser treatment," Applied energy, vol. 103, pp. 128-134, 2013.
    [10] R. Halim, B. Gladman, M. K. Danquah, and P. A. Webley, "Oil extraction from microalgae for biodiesel production," Bioresource technology, vol. 102, no. 1, pp. 178-185, 2011.
    [11] A. Sathish and R. C. Sims, "Biodiesel from mixed culture algae via a wet lipid extraction procedure," Bioresource technology, vol. 118, pp. 643-647, 2012.
    [12] S. H. Ho, S. W. Huang, C. Y. Chen, T. Hasunuma, A. Kondo, and J. S. Chang, "Bioethanol production using carbohydrate-rich microalgae biomass as feedstock," Bioresour Technol, vol. 135, pp. 191-8, May 2013.
    [13] P. Dürre, "Biobutanol: an attractive biofuel," Biotechnology journal, vol. 2, no. 12, pp. 1525-1534, 2007.
    [14] A. Srivastava and R. Prasad, "Triglycerides-based diesel fuels," Renewable and sustainable energy reviews, vol. 4, no. 2, pp. 111-133, 2000.
    [15] B. Freedman, E. Pryde, and T. Mounts, "Variables affecting the yields of fatty esters from transesterified vegetable oils," Journal of the American Oil Chemists Society, vol. 61, no. 10, pp. 1638-1643, 1984.
    [16] M. Nye et al., "Conversion of used frying oil to diesel fuel by transesterification: preliminary tests," Journal of the American Oil Chemists’ Society, vol. 60, no. 8, pp. 1598-1601, 1983.
    [17] 謝志誠, "生質柴油之技術與文獻探討," ed: 分享與跨越門檻與障礙, 2007.
    [18] A.-M. Cormos and C.-C. Cormos, "Techno-economic and environmental performances of glycerol reforming for hydrogen and power production with low carbon dioxide emissions," International Journal of Hydrogen Energy, vol. 42, no. 12, pp. 7798-7810, 2017.
    [19] R. Turton, R. C. Bailie, W. B. Whiting, and J. A. Shaeiwitz, Analysis, synthesis and design of chemical processes. Pearson Education, 2008.
    [20] M. Marshall, "Swift equipment cost index," ed, 2003.
    [21] D. Lozowski, G. Ondrey, S. Jenkins, and M. Bailey, "Chemical engineering plant cost index (CEPCI)," Chem Eng, vol. 119, p. 84, 2012.
    [22] T. Brown, Engineering economics and economic design for process engineers. CRC Press, 2016.
    [23] M. Finkbeiner, A. Inaba, R. Tan, K. Christiansen, and H.-J. Klüppel, "The new international standards for life cycle assessment: ISO 14040 and ISO 14044," The international journal of life cycle assessment, vol. 11, no. 2, pp. 80-85, 2006.
    [24] T. Lütke-Eversloh and H. Bahl, "Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production," Current opinion in biotechnology, vol. 22, no. 5, pp. 634-647, 2011.
    [25] J. Votruba, B. Volesky, and L. Yerushalmi, "Mathematical model of a batch acetone–butanol fermentation," Biotechnology and bioengineering, vol. 28, no. 2, pp. 247-255, 1986.
    [26] D. Cai et al., "Gas stripping–pervaporation hybrid process for energy-saving product recovery from acetone–butanol–ethanol (ABE) fermentation broth," Chemical Engineering Journal, vol. 287, pp. 1-10, 2016.
    [27] S. Nanda, D. Golemi-Kotra, J. C. McDermott, A. K. Dalai, I. Gökalp, and J. A. Kozinski, "Fermentative production of butanol: perspectives on synthetic biology," New biotechnology, vol. 37, pp. 210-221, 2017.
    [28] G. Liu, W. Wei, H. Wu, X. Dong, M. Jiang, and W. Jin, "Pervaporation performance of PDMS/ceramic composite membrane in acetone butanol ethanol (ABE) fermentation–PV coupled process," Journal of membrane science, vol. 373, no. 1-2, pp. 121-129, 2011.
    [29] J. R. Benemann and W. J. Oswald, "Systems and economic analysis of microalgae ponds for conversion of CO {sub 2} to biomass. Final report," California Univ., Berkeley, CA (United States). Dept. of Civil Engineering1996.
    [30] 林耿賢, "微藻生產生質燃料程序之經濟評估與生命週期分析," 2017.
    [31] J. M. Douglas, Conceptual design of chemical processes. McGraw-Hill New York, 1988.
    [32] W. Alkhayat and A. Gerrard, "Estimating manning levels for process plants," AACE Transactions, I, 1984.
    [33] L. Lardon, A. Helias, B. Sialve, J.-P. Steyer, and O. Bernard, "Life-cycle assessment of biodiesel production from microalgae," ed: ACS Publications, 2009.
    [34] T. M. Mata, A. A. Martins, and N. S. Caetano, "Microalgae for biodiesel production and other applications: A review," Renewable and Sustainable Energy Reviews, vol. 14, no. 1, pp. 217-232, 2010.
    [35] C.-Y. Chen et al., "Microalgae-based carbohydrates for biofuel production," Biochemical Engineering Journal, vol. 78, pp. 1-10, 2013.

    下載圖示 校內:2023-08-05公開
    校外:2023-08-05公開
    QR CODE