簡易檢索 / 詳目顯示

研究生: 何嘉翰
He, Jia-Han
論文名稱: 通過鑽石型四波混頻實現高效的通訊頻率轉換
Highly Efficient Telecom Frequency Conversion Realized through Diamond-Type Four-Wave Mixing
指導教授: 陳泳帆
Chen, Yong-Fan
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 95
中文關鍵詞: 冷銣原子鑽石型四波混頻量子轉頻
外文關鍵詞: Cold Rubidium Atoms, Diamond-type Four-Wave Mixing, Quantum Frequency Conversion
相關次數: 點閱:34下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文在冷銣原子系統中進行鑽石型四波混頻,將795nm的可見光波段探測光轉換為1367nm的通訊波段訊號光。實驗中使用795nm探測光、780nm耦合光和1324 nm 驅動光在四能階系統中進行四波混頻,產生1367nm訊號光。我們使用Λ型電磁誘發透明確定原子的光學密度,並用級聯型和V型電磁誘發透明確定耦合光和驅動光的拉比頻率以及鑽石型四波混頻結構的穩定性。結果成功實現67%的轉換效率,高於目前公開文獻中的最高效率54%。

    This thesis investigates diamond-type four-wave mixing in a cold rubidium atomic system to convert a 795 nm probe light from the visible light band to a 1367 nm signal light in the telecommunication E-band. The experimental setup utilizes a four-level system with a 795 nm probe light, a 780 nm coupling light, and a 1324 nm driving light to produce the 1367 nm signal light through four-wave mixing. We employ Λ-type Electromagnetically Induced Transparency (EIT) to ascertain the optical density of the atoms and cascade-type and V-type EIT are used to determine the rabi frequency of the coupling and driving lights, respectively. And verify the structural stability of the diamond-type four-wave mixing using V-type EIT and cascade-type EIT. Our results demonstrate a conversion efficiency of 67%, higher than the 54% recorded in previous literature.

    摘要 i 英文延伸摘要 ii 誌謝 xii 目錄 xiii 圖片 xv 第1章 緒論 1 1.1 簡介 1 第2章 基本理論 2 2.1 光學布拉赫方程 2 2.2 馬克士威-薛丁格方程 4 2.3 二能階 7 2.4 電磁誘發透明 12 2.4.1 Λ型電磁誘發透明 12 2.4.2 級聯型電磁誘發透明 18 2.4.3 V型電磁誘發透明 23 2.5 四波混頻 30 2.5.1鑽石型四波混頻 30 第3章 實驗系統 34 3.1 雷射穩頻系統 34 3.1.1 飽和吸收微分光譜 34 3.1.2 1324奈米雷射穩頻系統 35 3.2 冷原子系統 36 3.2.1 磁光陷阱 37 3.2.2 暗區自發力磁光陷阱 38 3.3 Λ型電磁誘發透明 40 3.3.1 能階 40 3.3.2 實驗架設 41 3.3.3 實驗時序 42 3.4 級聯型電磁誘發透明 44 3.4.1 能階 44 3.4.2 實驗架設 45 3.4.3 實驗時序 46 3.5 V型電磁誘發透明 48 3.5.1 能階 48 3.5.2 實驗架設 49 3.5.3 實驗時序 50 3.6 單一賽曼態鑽石型四波混頻 52 3.6.1 能階 52 3.6.2 實驗架設 53 3.6.3 實驗時序 54 3.6.4 相位匹配與相位不匹配 57 第4章 結果與討論 58 4.1電磁誘發透明 58 4.1.1 Λ型電磁誘發透明 58 4.1.2 級聯型電磁誘發透明 61 4.1.3 V型電磁誘發透明 64 4.2 單一賽曼態鑽石型四波混頻 67 4.2.1 相位不匹配鑽石型四波混頻 67 4.2.2 相位匹配鑽石型四波混頻 69 第5章 結論與未來展望 73 參考文獻 74

    [1] M. A. Nielsen, I. L. Chuang. “Quantum Computation and Quantum Information: 10th Anniversary Edition.” (2010).
    [2] G. J. Milburn1. “Photons as qubits.”Phys. Scr.2009, 014003 (2009).
    [3] S. E. Harris. “Electromagnetically induced transparency.”Physics Today 50 (7), 3642 (1997).
    [4] S. E. Harris. “Nonlinear optical processes using electromagnetically induced transparency.”Phys. Rev. L. 64, 1107, Vol. 64, (1990).
    [5] M. Yan, E. G. Rickey, and Y. Zhu. “Electromagnetically induced transparency in cold rubidium atoms.”J. Opt. Soc. Am, B 18, 1057-1062 (2001).
    [6] Y. Q. Li, M. Xiao. “Electromagnetically induced transparency in a three-level Λ-type system in rubidium atoms.”Phys. Rev. A. 51, R2703(R) (1995).
    [7] A. Lazoudis, T. Kirova, E. H. Ahmed, P. Qi, J. Huennekens, and A. M. Lyyra.“Electromagnetically induced transparency in an open V-type molecular system.”Phys. Rev. A83, 063419, (2011).
    [8] C. R. Higgins, I. G. Hughes. “Electromagnetically induced transparency in a V-system with 87Rb vapor in the hyperfine Paschen-Back regime.”arXiv, 2104.10613, (2021).
    [9] H.R.NohandH.S.Moon.“Transmittancesignalinrealladder-type atoms.”Phys. Rev. A85, 033817 (2012).
    [10] L. J. Yang, D. Q. Lu, and M. Zhao. “Phase Control of Electromagnetically Induced Transparency in a Cyclic Three-Level System.”2010 Symposium on Photonics and Optoelectronics, 1-4 (2010).
    [11] H. Schmidt, R. J. Ram. “All-optical wavelength converter and switch based on electromagnetically induced transparency.”Appl. Phys. Lett 76, 3173-3175 (2000).
    [12] T. Krauss. “Why do we need slow light?.”Nature Photon 2, 448-450 (2008).
    [13] R. Zhao, Y. O. Dudin, S. D. Jenkins, C. J. Campbel, D. N. Matsukevich, T. A. B. Kennedy A. Kuzmich. “Long-lived quantum memory. Nature Phys.”Nature Phys 5, 100–104 (2009).
    [14] D.S. Ding, Z. Y. Zhou, B. S. Shi, X. B. Zou, G.C.Guo.“Storage and retrieval of a light in telecomband in a cold atomic ensemble.”arXiv:1210.3963 (2012).
    [15] H.J. Briegel, W. Duer, J. I. Cirac, P. Zoller.“Quantum repeaters: The role of imperfect local operations in quantum communication.”Phys. Rev. Lett. 81, 5932–5935 (1998).
    [16] L.M. Duan, M.D.Lukin, J.I.Cirac, P.Zoller. “Long-distance quantum communication with atomic ensembles and linear optics.”Nature 414, 413–418 (2001).
    [17] C. Y. Cheng, Z. Y. Liu, P. S. Hu, T. N. Wang, C. Y. Chien, J. K. Lin, J. Y. Juo, J. S. Shiu, I. A. Yu, Y. C. Chen, and Y. F. Chen. “Efficient frequency conversion based on resonant four-wave mixing.”Optics Letters, Vol. 46 3, 681-684 (2021).
    [18] P. Kumar. "Quantum frequency conversion.“Opt. Lett. 15, 1476-1478 (1990).
    [19] D.S. Ding, Z.Y. Zhou, B.S. Shi, X.B. Zou, and G.C. Guo.”Linear up-conversion of orbital angular momentum.”Opt. Lett. 37(15), 3270–3272 (2012).
    [20] D.S. Ding, Z.Y. Zhou, B.S. Shi, and X.B. Zou.“Efficient infrared upconversion via a ladder-type atomic configuration.”J. Mod. Opt. 59(20), 1768–1771 (2012).
    [21] G. Wang, Y. Xue, J.H. Wu, Z.H. Kang, Y. Jiang, S.S. Liu, and J.Y. Gao.“Efficient frequency conversion induced by quantum constructive interference.”Opt. Lett. 35(22), 3778–3780 (2010).
    [22] C.Y. Lee, B.H. Wu, G. Wang, Y.F. Chen, Y.C. Chen, and A. Y. Ite. “High conversion efficiency in resonant four-wave mixing processes.”Opt. Express 24(2), 1008–1016 (2016).
    [23] R. Willis, F. Becerra, L. Orozco, and S. Rolston“Four-wave mixing in the diamond configuration in an atomic vapor.”Phys. Rev. A 79(3), 033814 (2009).
    [24] R. Kumar, V. Gokhroo, K. Deasy, and S. N. Chormaic. “Autler-townes splitting via frequency up-conversion at ultralow-power levels in cold rb 87 atoms using an optical nanofiber.”Phys. Rev. A 91(5), 053842 (2015).
    [25] P.H. Tseng, L.C. Chen, J.S. Shiu, and Y.F. Chen. “Quantum interface for telecom frequency conversion based on diamond-type atomic ensembles.”Phys. Rev. A 109, 043716 (2024).
    [26] C.Y. Cheng, Z.Y. Liu, P.S. Hu, T.N. Wang, C.Y. Chien, J.K. Lin, J.Y. Juo, J.S. Shiu, I. A. Yu, Y.C. Chen, and Y.F. Chen. “Efficient frequency conversion based on resonant four-wave mixing.”Opt. Lett. 46(3), 681–684 (2021).
    [27] A. Radnaev, Y. Dudin, R. Zhao, H. Jen, S. Jenkins, A. Kuzmich, and T. Kennedy. “A quantum memory with telecom-wavelength conversion.”Nat. Phys. 6(11), 894–899 (2010).
    [28] W.H. Zhang, Y.H. Ye, L. Zeng, M.X. Dong, E.Z. Li, J.Y. Peng, Y. Li, D.S. Ding, B.S. Shi. “Telecom-wavelength conversion in a high optical depth cold atomic system.”Optics Express, Vol. 31, No. 5 (2023).
    [29] C.Y. Cheng. “Quantum frequency conversion based on resonant-type quantum nonlinear optics.”Doctor Thesis, NCKU, (2021).
    [30] T.N.Wang.“Quasi-phase-matching slow light propagation in efficient four-wave mixing media.”Master Thesis, NCKU, (2020).
    [31] Y.L. Syue. “Electromagnetically induced transparency in cascade transitions of cold rubidium atoms.”Master Thesis, NCKU, (2022).
    [32] C.H. Chen. “Efficient Telecom Photon Conversion Based on Double-Cascade Transition.”Master Thesis, NCKU, (2020).
    [33] Y.C. Lee. “Study on Slow Light Effect Based on Electromagnetically Induced Transparency in Λ-, V-, and Cascade-Type Transitions.”Master Thesis, NCKU, (2023).
    [34] Y.L. Tsai. “Realization of Telecom Photon Frequency Conversion Based on Double Cascade Four-Wave Mixing in Cold Rubidium Atoms.”MasterThesis, NCKU, (2023).
    [35] W. Ketterle, K.B. Davis, M.A. Joffe, A. Martin, and D.E. Pritchard.“High densities of cold atoms in a dark spontaneous-force optical trap.”Phys Rev. Lett,70:2253-2256, (1993).

    下載圖示 校內:2025-08-01公開
    校外:2025-08-01公開
    QR CODE