簡易檢索 / 詳目顯示

研究生: 黃正瑋
Huang, Cheng-Wei
論文名稱: 碳纖維表面成長奈米碳管及含氧官能基以促進電容表現之研究
Carbon Nanotubes Grafting and Oxygen Functionalities Introduction to Enhance the Capacitive Performance of Carbon Fibers
指導教授: 鄧熙聖
Teng, Hsisheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 91
中文關鍵詞: 碳纖維奈米碳管電雙層電容電化學電容器導電度提升氧官能基過電位氧化
外文關鍵詞: Activated carbon fiber, Conductivity enhancement, Nanotube grafting, Polarization oxidation, Electrochemical capacitor, Oxygen functional groups, Carbon nanotube, Double layer capacitance
相關次數: 點閱:106下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗以碳纖維表面成長奈米碳管及含氧官能基強化電容器的應用性。成長奈米碳管的目的是為了降低碳-碳及碳-集電器間的接觸阻力,使電容器在高速率充放電時,能維持高電容量;而含氧官能基則是形成表面擬電容以提升電容量。電容器在充放電過程受總電阻影響,使其高電流密度下的能量儲存效率較低。本研究利用濺鍍法及化學沈積法在碳纖維表面上成長奈米碳管提升碳纖維的導電性,亦維持其高表面積(與含浸法相比),而在充放電測試中,放電流150 mA時,維持相對電容量損耗僅7%,而未成長奈米碳管的碳電極則有17%,並以電子繞射探討觸媒與奈米碳管的結晶結構及成長機制。並用交流阻抗分析碳電極內阻。至於表面氧化處理方面,以過電位氧化法在碳表面生成大量含氧官能基,大幅增加碳電極的電容量。由循環伏安法測得氧化後的碳電極電容量有463 F/g,提升70%的電容量,以程溫脫附(TPD)及表面元素分析(ESCA)分析表面含氧官能基的組成,發現有效提升電容量的組成是quinone類型的含氧官能基。

    Carbon nanotube (CNT)-grafting by chemical vapor deposition was conducted to reduce the resistance of activated carbon fiber serving as an electrode for electric double layer capacitors. Sputtering deposition of Ni catalyst particles led to a uniform growth of CNTs on the carbon fiber surface through the tip-growth mechanism. Because sputtering deposition ensures little pore blockage (in comparison with wet-impregnation), the surface area decrease of the carbon fiber due to Ni loading was minimized. A capacitor cell assembled with the CNT-grafted fiber showed higher electrolyte-ion and electron conductivities relative to a cell assembled with the bare fiber. By increasing the discharging current from 1 to 150 mA, the bare fiber exhibited a capacitance loss of 17% while the CNT-grafted fiber showed a mitigated capacitance loss of only 7%. This developed CNT-grafting technique renders activated carbon fiber a promising electrode material for a variety of electrochemical applications.In order to promote the performance of electrochemical capacitors, we use polarization oxidation method on activated carbon fabric for producing surface oxygen functional groups. The specific capacitance (463 F/g) of the carbon was found to increase upon polarization oxidation. Surface oxygen functional groups analysis using temperature programmed desorption and X-ray photoelectron spectroscopy showed that the double-layer capacitance was enhanced due to the presence of quinone type functional group.

    摘 要 Ⅰ Abstract Ⅱ 誌 謝 Ⅲ 總目錄 Ⅳ 表目錄 Ⅷ 圖目錄 Ⅸ 第一章 緒論 1 1-1 前言 1 1-2 超高電容器的發展與應用 2 1-3 研究動機 3 第二章 理論說明與文獻整理 4 2-1 碳纖維的性質 4 2-2 碳電極之改質方法 7 2-2.1 海膽狀碳材 7 2-2.2 表面氧化處理 8 2-3 碳材分析 9 2-3.1 吸附基本理論 9 2-3.2 拉曼光譜 13 2-3.3 程溫脫附 13 2-3.4 化學分析電子光譜 15 2-4 電容器 16 2-4.1 電容器簡介 16 2-4.2 平行板電容器 16 2-4.3 電容器串並聯 18 2-4.4 二極式及三極式電容器 21 2-5 電雙層的概念及結構 23 2-5.1 電雙層原理 23 2-5.2 Helmholtz電雙層模型 23 2-5.3 Stern電雙層模型 25 2-5.4 電雙層結構 26 2-6 電化學測試方法 28 2-6.1 循環伏安法 28 2-6.2 電化學充放電 29 2-6.3 交流阻抗理論 31 第三章 實驗設備與方法 37 3-1 操作設備及藥品 37 3-2 碳纖維表面成長奈米碳管 39 3-2.1 碳纖維表面擔載鎳觸媒 40 3-2.2 熱裂解化學沈積法成長奈米碳管 40 3-2.3 氮氣物理吸脫附實驗 41 3-2.4 SEM結構分析 42 3-2.5 TEM微結構分析 42 3-2.6 Raman分析 42 3-2.7 電容器組裝 43 3-2.8 循環伏安法 44 3-2.9 定電流充放電 44 3-2.10 交流阻抗分析 44 3-3 碳纖維表面氧化處理 45 3-3.1 熱處理 46 3-3.2 過電位氧化 47 3-3.3 X光光電子能譜分析 48 3-3.4 程溫脫附 48 3-3.5 電化學測試 49 第四章 結果與討論 50 4-1 表面成長奈米碳及碳材分析 50 4-1.1 SEM分析 50 4-1.2 HR-TEM分析 52 4-1.3 氮氣吸脫附結果分析 56 4-1.4 Raman分析 58 4-1.5 循環伏安法測試之分析與討論 60 4-1.6 定電流充放電行為與分析 63 4-1.7 交流阻抗及內部阻力之討論 68 4-2 過電位氧化處理與電容行為 73 4-2.1 三極式循環伏安測試 74 4-2.2 程溫脫附與官能基分析 78 4-2.3 XPS分析 82 第五章 結論 84 參考文獻 86

    1. R. Kotz, M. Carlen, Electrochemica Acta, 45 (2000) 2483
    2. L. Bonnefoi, P. Simon, J.F. Fauvarque, C. Sarrazin, J.F. Sarrau, A. Dugast, J. Power Sources, 80 (1999) 149
    3. J.P. Zheng, T.R. Jow, J. Power Sources, 62 (1996) 155
    4. R. Kotz, M. Carlen, Electrochim. Acta, 45 (2000) 2483
    5. K. Kinoshita, Carbon: electrochemical and physicochemical properties, John Wiley & Sons, New York, 1988, 293
    6. B.E. Conway, Electrochemical supercapacitors scientific fundamentals and technological applications, Kluwer Academic, New York, 1999, 105
    7. T. Osaka, X. Liu, M. Nijima, T. Momma, J. Electrochem. Soc. 146 (1999) 1724
    8. S. Yoon, J. Lee, T. Hyeon, S.M. Oh, J. Electrochem. Soc. 147 (2000) 2507
    9. E. Frackowiak, F. Beguin, Carbon 39 (2001) 937
    10. M. Endo, T. Maeda, T. Takeda, Y.J. Kim, K. Koshibak, H. Hara, J. Electrochem. Soc. 148 (2001) A910
    11. C.T. Hsieh, H. Teng, Carbon 40 (2002) 667
    12. Y.R. Nian, H. Teng, J. Electrochem. Soc. 149 (2002) A1008
    13. D. Lozano-Castello, D. Cazorla-Amoros, A. Linares-Solano, S. Shiraishi, H. Kurihara, A. Oya, Carbon 41 (2003) 1765
    14. Y. Soneda, M. Toyoda, K. Hashiya, J. Yamashita, M. Kodama, H. Hatori, Carbon 41 (2003) 2680
    15. C. Kim, S.H. Park, W.J. Lee, K.S. Yang, Electrochimica Acta 50 (2004) 877
    16. C. Kim, J.S. Kim, S.J. Kim, W.J. Lee, K.S. Yang, J. Electrochem. Soc. 151 (2004) A769
    17. C. Kim, J. Power Sources 142 (2005) 382
    18. H.Y. Liu, K.P. Wang, H. Teng, Carbon 43 (2005) 559
    19. C.S. Li, D.Z. Wang, X.F. Wang, J. Liang, Carbon 43 (2005) 1557
    20. K. Okajima, K. Ohta, M. Sudoh, Electrochim Acta 50 (2005) 2227
    21. K.P. Wang, H. Teng, Carbon 44 (2006) 3218
    22. C.S. Du, J. Yeh, N. Pan Nanotechnology 16 (2005) 350
    23. Y.Z. Wei, B. Fang, S. Iwasa, M. Kumagai, J. Power Sources 141 (2005) 386
    24. C.S. Du, N. Pan, Nanotechnology 17 (2006) 5314
    25. G.J. Lee, S.I. Pyun, Electrochimica Acta 51 (2006) 3029
    26. B. Fang, L. Binder, J. Power Sources 163 (2006) 616
    27. S.R.S. Prabaharan, R. Vimala, Z. Zainal, J. Power Sources 161 (2006) 730
    28. K.H. An, Y.H. Lee, J. Power Sources 173 (2007) 621
    29. B. Fang, L. Binder, Electrochimica Acta 52 (2007) 6916
    30. S.H. Yoon, Y. Korai, I. Mochida, in: H. Marsh, F. Rodriguez-Reinoso (Eds.), Carbon fibers and active carbon fibers chapter 8, University of Alicante, Inc. Alicante, Spain, 2000, 287
    31. K. Okajima, A. Ikeda, K. Kamoshita, M. Sudoh, Electrochimica Acta 51 (2005) 972
    32. B. Xu, F. Wu, S. Chen, C. Zhang, G. Cao, Y. Yang, Electrochimica Acta 52 (2007) 4595
    33. K.P. Wang, H. Teng, J. Electrochem. Soc. 154 (2007) A993
    34. S.C. Bennett, D.J. Johnson, R. Murray, Carbon 14 (1976) 117
    35. E. Frackowiak, K. Metenier, V. Bertagna, F. Beguin, Appl. Phys. Lett. 77 (2000) 2421
    36. E. Frackowiak, K. Jurewicz, S. Delpeux, F. Beguin, J. Power Sources 97–98 (2001) 822
    37. K.H. An, W.S. Kim, Y.S. Park, Y.C. Choi, S.M. Lee, D.C. Chung, D.J. Bae, S.C. Lim, Y.H. Lee, Adv. Mater. 13 (2001) 497
    38. K.H. An, W.S. Kim, Y.S. Park, J.M. Moon, D.J. Bae, S.C. Lim, Y.S. Lee, Y.H. Lee, Adv. Funct. Mater. 11 (2001) 387
    39. M. Hughes, M.S.P. Shaffer, A.C. Renouf, C. Singh, G.Z. Chen, J. Fray, A.H. Windle, Adv. Mater. 14 (2002) 382
    40. M. Hughes, G.Z. Chen, M.S.P. Shaffer, D.J. Fray, A.H. Windle, Chem. Mater. 14 (2002) 1610
    41. B.J. Yoon, S.H. Jeong, K.H. Lee, H.S. Kim, C.G. Park, J.H. Han, Chem. Phys. Lett. 388 (2004) 170
    42. H. Zhang, G. Cao, Y. Yang, Z. Gu, J. Electrochem. Soc. 155 (2008) K19
    43. Y. Piao, K. An, J. Kim, T. Yu, T. Hyeon, J. Mater. Chem. 16 (2006) 2984
    44. C.H. Wang, H.C. Shih , Y.T. Tsai, H.Y. Du, L.C. Chen, K.H. Chen, Electrochimica Acta 52 (2006) 1612
    45. F. Su, X. Li, L. Lv, X.S. Zhao, Carbon 44 (2006) 799
    46. N. Sonoyama, M. Ohshita, A. Nijubu, H. Nishikawa, H. Yanase, J.I. Hayashi, T. Chiba, Carbon 44 (2006) 1754
    47. H.L. Zhang, Y. Zhang, X.G. Zhang, F. Li, C. Liu, J. Tan, H.M. Cheng, Carbon 44 (2006) 2778
    48. J.M. Rosolen, E.Y. Matsubara, M.S. Marchesin, S.M. Lala, L.A. Montoro, S. Tronto, J. Power Sources 162 (2006) 620
    49. X.W. Chen, D.S. Su, S.B.A. Hamid, R. Schlogl, Carbon 45 (2007) 892
    50. A. Peignery, Ch. Laurent, F. Dobigeon, A. Rousset, J. Mater. Res. 12 (1997) 613
    51. Y.C. Choi, Y.M. Shin, Y.H. Lee, B. S. Lee, G.-S. Park, W.B. Choi, N.S. Lee, J.M. Kim, Appl. Phys. Lett. 76 (2000) 2367
    52. S. Brunauer, The Adsorption of Gases and Vapor. Vol. 1, Physical Adsorption, Princeton University, Princeton, Now York, 1943
    53. V. Alfredsson, M. W. Anderson, Chem. Mater. 8 (1996) 1141
    54. A.H. Schoen, NASH Technical Note D-5541; NASH: Washington, DC, 1970
    55. M. Kruk, M. Jaroniec, J. Phys. Chem. B 104 (2000) 7960
    56. M. Shao, Q. Li, J. Wu, B. Xie, S. Zhang, Y. Qian, Carbon 40 (2000) 2961
    57. W. Li, H. Zhang, C. Wang, Y. Zhang, L. Xu, K. Zhu, Appl. Phys. Lett. 70 (1997) 2684
    58. L. Liu, Y. Qin, Z.X. Guo, D. Zhu, Carbon 41 (2003) 331
    59. K.H. Liao, J.M. Ting, Carbon, 42 (2004) 509
    60. J.L. Figueiredo, M.F.R. Pereira, M.M.A. Freitas, J.J. M. Orfao, Carbon 37 (1999) 1379
    61. C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, G..E. Muilenberg, Handbook of X-Ray photoelectron spectroscopy, Perkin-Elmer, Eden Prairie, Minnesota, 1979
    62. H.D. Young, Physics, Addison-Wesley Publishing Co. :New York, 1992
    63. A.J. Bard, L.R. Faulkner, Electrochemical Principles, Methods, and Applications, Oxford University, Britain, 1996
    64. D. Qu, H. Shi, J. Power Sources 74 (1998) 99
    65. C.H. Hamann, A. Hamnett, W. Vielstich, Electrochemistry, Wiley-Vch :New York, (1998).
    66. J.S. Mattson, Jr. H.B. Mark, Activated Carbon : Surface Chemistry and Adsorption from Solution, Wiley-Vch :New York, 1998
    67. A.J. Bard, L.R. Faulkner, Electrochemical Methods Fundamental and Application, John Wiley & Sons, Canada, 1980
    68. I. Alstrup, J. Catal. 109 (1988) 241
    69. R.T. Yang, J.P. Chen, J. Catal. 115 (1989) 52
    70. R.D. Levie, Electrochim. Acta. 8 (1963) 751
    71. L.G. Austin, E.G.. Gagnon, J. Electrochem. Soc. 120 (1973) 251
    72. X. Liu, T. Osaka, J. Electrochem. Soc. 143 (1996) 12
    73. T. Momma, X. Liu, T. Osaka, Y. Ushio, Y. Sawada, J. Power Sources 60 (1996) 249
    74. Y.R. Nian, H. Teng, J. Electroanal. Chem. 540 (2003) 119
    75. Y. Leon, C.A. Leon, L.R. Radovic, Interfacial chemistry and electrochemistry of carbon surfaces. In : Thrower PA, editor. Chemistry and Physics of Carbon, Vol 24, New York : Marcel Dekker, 1994, 213
    76. M.A. Montes-Moran, D. Suarez, J.A. Menendez, E. Fuente, Carbon 42 (2004) 1219
    77. A.G. Pandolfo, A.F. Hollenkamp, J. Power Sources 157 (2006) 11
    78. V.V. Panic, R.M. Stevanovic, V.M. Jovanovic, A.B. Dekanski, J. Power Sources, 181 (2008) 186
    79. W.H. Lee, J.Y. Kim, Y.K. Ko, P.J. Reucroft, J.W. Zondlo, Applied Surface Science 141 (1999) 107
    80. J.H. Zhou, Z.J. Sui, J. Zhu, P. Li, D. Chen, Y.C. Dai, W.K. Yuan, Carbon 45 (2007) 785
    81. G..S. Szymanski, Z. Karpinski, S. Biniak, A. Swiatkowski, Carbon 40 (2002) 2627
    82. H. Yamada, H. Nakamura, F. Nakahara, I. Moriguchi, T. Kudo, J. Phys. Chem. C 111 (2007) 227

    下載圖示 校內:2014-07-22公開
    校外:2014-07-22公開
    QR CODE