| 研究生: |
黃正瑋 Huang, Cheng-Wei |
|---|---|
| 論文名稱: |
碳纖維表面成長奈米碳管及含氧官能基以促進電容表現之研究 Carbon Nanotubes Grafting and Oxygen Functionalities Introduction to Enhance the Capacitive Performance of Carbon Fibers |
| 指導教授: |
鄧熙聖
Teng, Hsisheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 碳纖維 、奈米碳管 、電雙層電容 、電化學電容器 、導電度提升 、氧官能基 、過電位氧化 |
| 外文關鍵詞: | Activated carbon fiber, Conductivity enhancement, Nanotube grafting, Polarization oxidation, Electrochemical capacitor, Oxygen functional groups, Carbon nanotube, Double layer capacitance |
| 相關次數: | 點閱:106 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗以碳纖維表面成長奈米碳管及含氧官能基強化電容器的應用性。成長奈米碳管的目的是為了降低碳-碳及碳-集電器間的接觸阻力,使電容器在高速率充放電時,能維持高電容量;而含氧官能基則是形成表面擬電容以提升電容量。電容器在充放電過程受總電阻影響,使其高電流密度下的能量儲存效率較低。本研究利用濺鍍法及化學沈積法在碳纖維表面上成長奈米碳管提升碳纖維的導電性,亦維持其高表面積(與含浸法相比),而在充放電測試中,放電流150 mA時,維持相對電容量損耗僅7%,而未成長奈米碳管的碳電極則有17%,並以電子繞射探討觸媒與奈米碳管的結晶結構及成長機制。並用交流阻抗分析碳電極內阻。至於表面氧化處理方面,以過電位氧化法在碳表面生成大量含氧官能基,大幅增加碳電極的電容量。由循環伏安法測得氧化後的碳電極電容量有463 F/g,提升70%的電容量,以程溫脫附(TPD)及表面元素分析(ESCA)分析表面含氧官能基的組成,發現有效提升電容量的組成是quinone類型的含氧官能基。
Carbon nanotube (CNT)-grafting by chemical vapor deposition was conducted to reduce the resistance of activated carbon fiber serving as an electrode for electric double layer capacitors. Sputtering deposition of Ni catalyst particles led to a uniform growth of CNTs on the carbon fiber surface through the tip-growth mechanism. Because sputtering deposition ensures little pore blockage (in comparison with wet-impregnation), the surface area decrease of the carbon fiber due to Ni loading was minimized. A capacitor cell assembled with the CNT-grafted fiber showed higher electrolyte-ion and electron conductivities relative to a cell assembled with the bare fiber. By increasing the discharging current from 1 to 150 mA, the bare fiber exhibited a capacitance loss of 17% while the CNT-grafted fiber showed a mitigated capacitance loss of only 7%. This developed CNT-grafting technique renders activated carbon fiber a promising electrode material for a variety of electrochemical applications.In order to promote the performance of electrochemical capacitors, we use polarization oxidation method on activated carbon fabric for producing surface oxygen functional groups. The specific capacitance (463 F/g) of the carbon was found to increase upon polarization oxidation. Surface oxygen functional groups analysis using temperature programmed desorption and X-ray photoelectron spectroscopy showed that the double-layer capacitance was enhanced due to the presence of quinone type functional group.
1. R. Kotz, M. Carlen, Electrochemica Acta, 45 (2000) 2483
2. L. Bonnefoi, P. Simon, J.F. Fauvarque, C. Sarrazin, J.F. Sarrau, A. Dugast, J. Power Sources, 80 (1999) 149
3. J.P. Zheng, T.R. Jow, J. Power Sources, 62 (1996) 155
4. R. Kotz, M. Carlen, Electrochim. Acta, 45 (2000) 2483
5. K. Kinoshita, Carbon: electrochemical and physicochemical properties, John Wiley & Sons, New York, 1988, 293
6. B.E. Conway, Electrochemical supercapacitors scientific fundamentals and technological applications, Kluwer Academic, New York, 1999, 105
7. T. Osaka, X. Liu, M. Nijima, T. Momma, J. Electrochem. Soc. 146 (1999) 1724
8. S. Yoon, J. Lee, T. Hyeon, S.M. Oh, J. Electrochem. Soc. 147 (2000) 2507
9. E. Frackowiak, F. Beguin, Carbon 39 (2001) 937
10. M. Endo, T. Maeda, T. Takeda, Y.J. Kim, K. Koshibak, H. Hara, J. Electrochem. Soc. 148 (2001) A910
11. C.T. Hsieh, H. Teng, Carbon 40 (2002) 667
12. Y.R. Nian, H. Teng, J. Electrochem. Soc. 149 (2002) A1008
13. D. Lozano-Castello, D. Cazorla-Amoros, A. Linares-Solano, S. Shiraishi, H. Kurihara, A. Oya, Carbon 41 (2003) 1765
14. Y. Soneda, M. Toyoda, K. Hashiya, J. Yamashita, M. Kodama, H. Hatori, Carbon 41 (2003) 2680
15. C. Kim, S.H. Park, W.J. Lee, K.S. Yang, Electrochimica Acta 50 (2004) 877
16. C. Kim, J.S. Kim, S.J. Kim, W.J. Lee, K.S. Yang, J. Electrochem. Soc. 151 (2004) A769
17. C. Kim, J. Power Sources 142 (2005) 382
18. H.Y. Liu, K.P. Wang, H. Teng, Carbon 43 (2005) 559
19. C.S. Li, D.Z. Wang, X.F. Wang, J. Liang, Carbon 43 (2005) 1557
20. K. Okajima, K. Ohta, M. Sudoh, Electrochim Acta 50 (2005) 2227
21. K.P. Wang, H. Teng, Carbon 44 (2006) 3218
22. C.S. Du, J. Yeh, N. Pan Nanotechnology 16 (2005) 350
23. Y.Z. Wei, B. Fang, S. Iwasa, M. Kumagai, J. Power Sources 141 (2005) 386
24. C.S. Du, N. Pan, Nanotechnology 17 (2006) 5314
25. G.J. Lee, S.I. Pyun, Electrochimica Acta 51 (2006) 3029
26. B. Fang, L. Binder, J. Power Sources 163 (2006) 616
27. S.R.S. Prabaharan, R. Vimala, Z. Zainal, J. Power Sources 161 (2006) 730
28. K.H. An, Y.H. Lee, J. Power Sources 173 (2007) 621
29. B. Fang, L. Binder, Electrochimica Acta 52 (2007) 6916
30. S.H. Yoon, Y. Korai, I. Mochida, in: H. Marsh, F. Rodriguez-Reinoso (Eds.), Carbon fibers and active carbon fibers chapter 8, University of Alicante, Inc. Alicante, Spain, 2000, 287
31. K. Okajima, A. Ikeda, K. Kamoshita, M. Sudoh, Electrochimica Acta 51 (2005) 972
32. B. Xu, F. Wu, S. Chen, C. Zhang, G. Cao, Y. Yang, Electrochimica Acta 52 (2007) 4595
33. K.P. Wang, H. Teng, J. Electrochem. Soc. 154 (2007) A993
34. S.C. Bennett, D.J. Johnson, R. Murray, Carbon 14 (1976) 117
35. E. Frackowiak, K. Metenier, V. Bertagna, F. Beguin, Appl. Phys. Lett. 77 (2000) 2421
36. E. Frackowiak, K. Jurewicz, S. Delpeux, F. Beguin, J. Power Sources 97–98 (2001) 822
37. K.H. An, W.S. Kim, Y.S. Park, Y.C. Choi, S.M. Lee, D.C. Chung, D.J. Bae, S.C. Lim, Y.H. Lee, Adv. Mater. 13 (2001) 497
38. K.H. An, W.S. Kim, Y.S. Park, J.M. Moon, D.J. Bae, S.C. Lim, Y.S. Lee, Y.H. Lee, Adv. Funct. Mater. 11 (2001) 387
39. M. Hughes, M.S.P. Shaffer, A.C. Renouf, C. Singh, G.Z. Chen, J. Fray, A.H. Windle, Adv. Mater. 14 (2002) 382
40. M. Hughes, G.Z. Chen, M.S.P. Shaffer, D.J. Fray, A.H. Windle, Chem. Mater. 14 (2002) 1610
41. B.J. Yoon, S.H. Jeong, K.H. Lee, H.S. Kim, C.G. Park, J.H. Han, Chem. Phys. Lett. 388 (2004) 170
42. H. Zhang, G. Cao, Y. Yang, Z. Gu, J. Electrochem. Soc. 155 (2008) K19
43. Y. Piao, K. An, J. Kim, T. Yu, T. Hyeon, J. Mater. Chem. 16 (2006) 2984
44. C.H. Wang, H.C. Shih , Y.T. Tsai, H.Y. Du, L.C. Chen, K.H. Chen, Electrochimica Acta 52 (2006) 1612
45. F. Su, X. Li, L. Lv, X.S. Zhao, Carbon 44 (2006) 799
46. N. Sonoyama, M. Ohshita, A. Nijubu, H. Nishikawa, H. Yanase, J.I. Hayashi, T. Chiba, Carbon 44 (2006) 1754
47. H.L. Zhang, Y. Zhang, X.G. Zhang, F. Li, C. Liu, J. Tan, H.M. Cheng, Carbon 44 (2006) 2778
48. J.M. Rosolen, E.Y. Matsubara, M.S. Marchesin, S.M. Lala, L.A. Montoro, S. Tronto, J. Power Sources 162 (2006) 620
49. X.W. Chen, D.S. Su, S.B.A. Hamid, R. Schlogl, Carbon 45 (2007) 892
50. A. Peignery, Ch. Laurent, F. Dobigeon, A. Rousset, J. Mater. Res. 12 (1997) 613
51. Y.C. Choi, Y.M. Shin, Y.H. Lee, B. S. Lee, G.-S. Park, W.B. Choi, N.S. Lee, J.M. Kim, Appl. Phys. Lett. 76 (2000) 2367
52. S. Brunauer, The Adsorption of Gases and Vapor. Vol. 1, Physical Adsorption, Princeton University, Princeton, Now York, 1943
53. V. Alfredsson, M. W. Anderson, Chem. Mater. 8 (1996) 1141
54. A.H. Schoen, NASH Technical Note D-5541; NASH: Washington, DC, 1970
55. M. Kruk, M. Jaroniec, J. Phys. Chem. B 104 (2000) 7960
56. M. Shao, Q. Li, J. Wu, B. Xie, S. Zhang, Y. Qian, Carbon 40 (2000) 2961
57. W. Li, H. Zhang, C. Wang, Y. Zhang, L. Xu, K. Zhu, Appl. Phys. Lett. 70 (1997) 2684
58. L. Liu, Y. Qin, Z.X. Guo, D. Zhu, Carbon 41 (2003) 331
59. K.H. Liao, J.M. Ting, Carbon, 42 (2004) 509
60. J.L. Figueiredo, M.F.R. Pereira, M.M.A. Freitas, J.J. M. Orfao, Carbon 37 (1999) 1379
61. C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, G..E. Muilenberg, Handbook of X-Ray photoelectron spectroscopy, Perkin-Elmer, Eden Prairie, Minnesota, 1979
62. H.D. Young, Physics, Addison-Wesley Publishing Co. :New York, 1992
63. A.J. Bard, L.R. Faulkner, Electrochemical Principles, Methods, and Applications, Oxford University, Britain, 1996
64. D. Qu, H. Shi, J. Power Sources 74 (1998) 99
65. C.H. Hamann, A. Hamnett, W. Vielstich, Electrochemistry, Wiley-Vch :New York, (1998).
66. J.S. Mattson, Jr. H.B. Mark, Activated Carbon : Surface Chemistry and Adsorption from Solution, Wiley-Vch :New York, 1998
67. A.J. Bard, L.R. Faulkner, Electrochemical Methods Fundamental and Application, John Wiley & Sons, Canada, 1980
68. I. Alstrup, J. Catal. 109 (1988) 241
69. R.T. Yang, J.P. Chen, J. Catal. 115 (1989) 52
70. R.D. Levie, Electrochim. Acta. 8 (1963) 751
71. L.G. Austin, E.G.. Gagnon, J. Electrochem. Soc. 120 (1973) 251
72. X. Liu, T. Osaka, J. Electrochem. Soc. 143 (1996) 12
73. T. Momma, X. Liu, T. Osaka, Y. Ushio, Y. Sawada, J. Power Sources 60 (1996) 249
74. Y.R. Nian, H. Teng, J. Electroanal. Chem. 540 (2003) 119
75. Y. Leon, C.A. Leon, L.R. Radovic, Interfacial chemistry and electrochemistry of carbon surfaces. In : Thrower PA, editor. Chemistry and Physics of Carbon, Vol 24, New York : Marcel Dekker, 1994, 213
76. M.A. Montes-Moran, D. Suarez, J.A. Menendez, E. Fuente, Carbon 42 (2004) 1219
77. A.G. Pandolfo, A.F. Hollenkamp, J. Power Sources 157 (2006) 11
78. V.V. Panic, R.M. Stevanovic, V.M. Jovanovic, A.B. Dekanski, J. Power Sources, 181 (2008) 186
79. W.H. Lee, J.Y. Kim, Y.K. Ko, P.J. Reucroft, J.W. Zondlo, Applied Surface Science 141 (1999) 107
80. J.H. Zhou, Z.J. Sui, J. Zhu, P. Li, D. Chen, Y.C. Dai, W.K. Yuan, Carbon 45 (2007) 785
81. G..S. Szymanski, Z. Karpinski, S. Biniak, A. Swiatkowski, Carbon 40 (2002) 2627
82. H. Yamada, H. Nakamura, F. Nakahara, I. Moriguchi, T. Kudo, J. Phys. Chem. C 111 (2007) 227