簡易檢索 / 詳目顯示

研究生: 陳泓毅
Chen, Hung-Yi
論文名稱: 增進輸送效率的新型經皮輸送晶片系統之研究
The Study of Novel Transdermal Delivery Chip System to Enhance the Efficiency of Delivery
指導教授: 林裕城
Lin, Yu-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 112
中文關鍵詞: 晶片系統經皮輸送金奈米粒子微機電製程
外文關鍵詞: AuNPs, transdermal delivery, MEMS, chip systems
相關次數: 點閱:93下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究開發兩款經皮輸送晶片系統以輸送金奈米粒子(gold nanoparticles)進入人體角質層(stratum corneum)與鼠的皮膚。離子導入式經皮輸送晶片系統乃利用微機電製程製作晶片,並使用雷射雕刻機製作壓克力(polymethylmethacrylate, PMMA)反應槽,透過電性原理來輸送金奈米粒子進入人體角質層。此型晶片應用的原理為輸入一低電壓之直流電源,藉著靜電力來驅動金奈米粒子以便輸送進入人體角質層。實驗結果證實,當角質層厚度為240 µm,實驗時間固定為一小時,分別通以3、6及9 V之電壓。其中3 V並無明顯效果,而6 V即可於人體角質層中觀察到金奈米粒子沿著細胞間通道或是直接穿透角質層來進行輸送。而電穿孔滲透式經皮輸送晶片系統乃利用微機電製程製作電穿孔晶片,將晶片通以脈衝電壓之後,電極間會產生一穿膜電場,此電場會在實驗鼠皮膚上形成孔洞,以使金奈米凝膠得以滲透。本型經皮輸送晶片系統有別於一般的電穿孔法,使用5與10 V及10 Hz的脈衝電壓即能得到經皮輸送的效果。藉由兩種經皮輸送晶片系統可知金奈米粒子是被動式的輸送,且以模擬與實驗結果來觀察,可得到電壓之增加也會增加金奈米粒子經皮輸送的結論。

    This paper reports two transdermal delivery chip systems for delivering gold nanoparticles (AuNPs) into human stratum corneum (HSC) and rat skin. The proposed iontophoresis transdermal delivery chip system cloud provides electrostatic force to drive AuNPs. The AuNPs were via intercellular route to deliver into HSC. Various DC voltages (3, 6, 9 V) were employed to generate different intensity electric fields (32~98 V/mm) for driving AuNPs into HSC. The electroporation transdermal delivery chip system could provide appropriate electric field for the EP on the chip surface. The electric field could generate pathway on rat skin to delivery gel of gold nanoparticles. Various DC voltages (5, 10 V) and 10 Hz were employed to generate different intensity electric fields (819~1638 V/cm) for driving AuNPs into rat skin. The results of simulation show permeability of the skin and rat skin increases with the electric voltage. We use micro-electro-mechanical systems (MEMS) technology to design and fabricated the proposed chip systems. The proposed transdermal delivery chip system will provide many potential usages for biomedical applications.

    目錄 中文摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 XII 第一章 緒論 1 1-1 前言 1 1-2 藥物經皮輸送途徑 4 1-2-1 皮膚的結構與功能 4 1-2-2 角質層輸送途徑 7 1-3 經皮輸送方式 12 1-3-1 離子導入滲透法 16 1-3-2 電穿孔滲透法 17 1-4 影響經皮輸送之因素 21 1-5 金奈米粒子 22 1-6 研究動機與目的 24 1-7 研究架構 26 第二章 金奈米粒子製備及檢測 27 2-1 金奈米粒子製程 27 2-1-1 金奈米粒子溶液製程 27 2-1-2 金奈米粒子膠體製程 30 2-2 金奈米粒子分析系統 32 2-2-1 紫外光-可見光吸收光譜分析 32 2-2-2 穿透式電子顯微鏡拍攝分析 36 第三章 晶片系統結構設計及數值模擬 37 3-1 晶片系統結構設計 37 3-1-1 離子導入式經皮輸送晶片系統設計 38 3-2 晶片電壓電場數值模擬 42 3-2-1-1 前置處理 43 3-2-1-2 解方程式 44 3-2-1-3 後置處理 44 3-2-2-1 晶片數值模型建立 45 3-2-2-2 結構模型離散化 46 3-2-2-3 邊界條件設定與運算 47 3-2-2-4 網格密度收斂性 48 3-2-2-5 模擬後處理 50 3-2-3-1 晶片數值模型建立 50 3-2-3-2 結構模型離散化 52 3-2-3-3 邊界條件設定與運算 53 3-2-3-4 網格密度收斂性 53 3-2-3-5 模擬後處理 55 第四章 晶片製作與電源系統 56 4-1 晶片製程 57 4-1-1 晶片金屬電極製程 57 4-2 反應槽製程 62 第五章 角質層與實驗鼠皮膚處理與實驗 66 5-1 角質層處理與實驗 66 5-1-1 角質層處理方式 66 5-1-2 離子導入式經皮輸送實驗 66 5-2 實驗鼠皮膚處理與實驗 69 5-2-1 實驗鼠皮膚處理方式 69 5-2-2 電穿孔滲透式經皮輸送實驗 70 第六章 結果與討論 72 6-1 晶片結構數值模擬結果分析 72 6-2 經皮輸送結果-離子導入式晶片系統 82 6-3 經皮輸送結果-電穿孔滲透式晶片系統 92 第七章 結論與建議 99 7-1 結論 99 7-2 建議 101 參考資料 102 自述 102 圖目錄 圖1-1 人體皮膚結構圖 5 圖1-2 角質層結構圖 8 圖1-3 被動式經皮輸藥系統之穿透路徑 11 圖1-4 皮膚吸收促進劑改變角質層構造圖 14 圖1-5 超音波之空穴效應 14 圖1-6 離子導入藥物進入皮膚示意圖 17 圖1-7 電穿孔滲透與離子導入法之經皮輸送路徑比較圖 18 圖1-8 可逆性電崩潰現象 18 圖1-9 負離子以靜電保護奈米微粒示意圖 22 圖1-11 實驗架構圖 26 圖2-1 粒徑5 nm的金奈米粒子在UV-Vis光譜儀的吸收光譜 29 圖2-2 金奈米粒子之TEM圖 29 圖2-3 金奈米粒子凝膠 31 圖2-4 HP8453紫外光-可見光(UV-Vis)吸收光譜儀 32 圖3-1 離子導入式電極晶片分解圖 38 圖3-2 離子導入式晶片系統3D結構分解圖 39 圖3-4 電穿孔滲透式晶片之光罩圖 41 圖3-5 ANSYS之分析流程圖 45 圖3-6 離子導入式晶片的數值模型 46 圖3-7 離子導入式晶片之反應區離散化 47 圖3-8 離子導入式晶片施加負載條件示意圖 48 圖3-9 網格密度與電場強度關係圖(負載為3 V) 49 圖3-10 電穿孔滲透式晶片的數值模型 51 圖3-11 電穿孔滲透式全晶片離散化示意圖 52 圖3-12 電穿孔滲透式晶片施加負載條件示意圖 53 圖3-13 網格密度與電場強度關係圖(負載為10 V) 55 圖4-1 函數波形產生器 56 圖4-4 GCC LaserPROTM VENUS雷射雕刻機 62 圖4-5 PMMA反應槽結構尺寸示意圖 64 圖4-6 PMMA反應槽分解示意圖 65 圖5-1 人體角質層 66 圖5-2 離子導入式晶片系統機制示意圖 67 圖5-3 實驗鼠皮膚 69 圖5-4 電穿孔滲透式晶片系統機制示意圖 70 圖6-1 反應區二維穩態數值模擬向量線圖 72 圖6-2 模擬平面與剖線示意圖 73 圖6-3 AA’剖線電場分布圖 73 圖6-4 晶片電場二維穩態數值模擬向量圖 75 圖6-6 5 V之二維穩態數值模擬 76 圖6-7 10 V之二維穩態數值模擬 77 圖6-8 BB’剖線電場分布 78 圖6-9 工作電壓為5 V時之CC’-FF’剖線電場分布圖 79 圖6-11 脈衝波形圖 81 圖6-11 局部輸送區域示意圖 83 圖6-12 離子導入式經皮輸送實驗之控制組與實驗組 84 圖6-13 角質層之顯微鏡照片 85 圖6-14 角質層之色階分布圖 86 圖6-15 角質層之TEM照片(控制組) 88 圖6-16 角質層之TEM照片(實驗組) 89 圖6-17 不同電壓參數實驗之角質層 90 圖6-18 不同電壓參數實驗之色階分布圖 91 圖6-20 鼠皮之色階分布圖 94 圖6-21 實驗鼠皮膚之顯微鏡照片 95 圖6-22 實驗後鼠皮膚之TEM照片 96 圖6-23 以不同脈衝電壓進行電穿孔滲透實驗之實驗鼠皮膚 97 圖6-24 不同電壓參數實驗之色階分布圖 98 表目錄 表 1-1 四種經皮輸送法之比較 15

    [1] M. B. Brown, G. P. Martin, S. A. Jones and F. K. Akomeah, “Dermal and transdermal drug delivery systems: current and future prospects,” Drug Delivery, 13, 175, 2006.
    [2] M. R. Prausnitz, S. Mitragotri and R. Langer, “Current status and future potential of transdermal drug delivery,” Nature Reviews Drug Discovery, 3, 115, 2004.
    [3] R. R. Wickett and M. O. Visscher, “Structure and function of the epidermal barrier,” American Journal of Infection Control, 34, s98, 2006.
    [4] www.pharmpress.com/shop/samples/T&T-ch1.pdf
    [5] C. R. Harding, “The stratum corneum: structure and function in health and disease,” Dermatologic Therapy, 17, 6, 2004.
    [6] P. W. Wertz and B. V. D. Bergh, “The physical, chemical and functional properties of lipids in the skin and other biological barriers,” Chemistry and Physics of Lipids, 91, 85, 1998.
    [7] T. M. Suhonen, J. A. Bouwstra and A. Urtti, “Chemical enhancement of percutaneous absorption in relation to stratum corneum structural alternations,” Journal of Controlled Release, 59, 149, 1999.
    [8] B. W. Barry, “Novel mechanisms and devices to enable successful transdermal drug delivery,” European Journal of Pharmaceutical Sciences, 14, 101, 2001.
    [9] B. W. Barry, “Breaching the skin's barrier to drugs,” Nature Biotechnology, 22, 165, 2004.
    [10] M. R. Prausnitz, “The effects of electric current applied to skin: a review for transdermal drug delivery,” Advanced Drug Delivery Reviews, 18, 395, 1996.
    [11] A. Denet, R. Vanbever and V. Pre´at, “Skin electroporation for transdermal and topical delivery,” Advanced Drug Delivery Reviews, 56, 659, 2004.
    [12] M. Uchida, Y. Jin, H. Natsume, D. Kobayashi, K. Sugibayashi and Y. Morimoto, “Introduction of poly-L-lactic microspheres into the skin using supersonic flow: effects of helium gas pressure, particle size and microparticle dose on the amount introduced into hairless rat skin,” Journal of Pharmacy and Pharmacology, 54, 781, 2002.
    [13] P. Karande, A. Jain and S. Mitragotri, “Discovery of transdermal penetration enhancers by high-throughput screening,” Nature Biotechnology, 22, 192, 2004.
    [14] A. C. Williams and B. W. Barry, “Penetration enhancers,” Advanced Drug Delivery Reviews, 56, 603, 2004.
    [15] G. Merino, Y. N. Kalia and R.H. Guy, “Ultrasound-enhanced transdermal transport,” Journal of Pharmaceutical Sciences, 92, 1125, 2003.
    [16] A. F. Coston and J. K. Li, “Transdermal drug delivery: a comparative analysis of skin impedance models and parameters,” Proceedings of the 25th Annual Intemational Conference of the IEEE EMBS, 17, 2003.
    [17] A. F. Coston and J. K. Li, “Iontophoresis: modeling, methodology, and evaluation,” Cardiovascular Engineering, 1, 127, 2001.
    [18] Y. Wang, R. Thakur, Q. Fan and B. Michniak, “Transdermal iontophoresis: combination strategies to improve transdermal iontophoretic drug delivery,” European Journal of Pharmaceutics and Biopharmaceutics, 60, 179, 2005.
    [19] J. C. Weaver and Y. A. Chizmadzhev, “Theory of electroporation: A review,” Bioelectrochemistry and Bioenergetics, 41, 135, 1996.
    [20] Y. N. Kalia, A. Naik, J. Garrison and R. H. Guy, “Iontophoretic drug delivery,” Advanced Drug Delivery Reviews, 56, 619, 2004.
    [21] A. K. Nugroho, L. Li, D. Dijkstra, H. Wikstrfm, M. Danhof and J. A. Bouwstra, “Transdermal iontophoresis of the dopamine agonist 5-OH-DPAT in human skin in vitro,” Journal of Controlled Release, 103, 393, 2005.
    [22] S. W. Hui, “Low voltage electroporation of the skin, or is it iontophoresis,” Biophysical Society, 74, 679, 1998.
    [23] E. Neumann, M. Schaefer-Ridder, Y. Wang and P. H. Hofschneider, “Gene transfer into mouse lyoma cells by electroporation in high electric fields,” The EMBO Journal, 1, 841, 1982.
    [24] T. Nishi, K. Yoshizato, S. Yamashiro, H. Takeshima, K. Sato, K. Hamada, I. Kitamura, T. Yoshimura, H. Saya, J. Kuratsu and Y. Ushio, “High-efficiency in vivo gene transfer using intraarterial plasmid DNA injection following in vivo electroporation,” Cancer Research, 56, 1050, 1996.
    [25] J. A. Tamada, M. Lesho and M. J. Tierney, “Keeping watch on glucose,” IEEE Spectrum, 39, 52, 2002.
    [26] A. Sen, M. E. Daly and S. W. Hui, “Transdermal insulin delivery using lipid enhanced electroporation,” Biochimica et Biophysica Acta, 1564, 5, 2002.
    [27] A. K. Banga, S. Bose and T. K. Ghosh, “Iontophoresis and electroporation: comparisons and contrasts,” International Journal of Pharmaceutics, 179, 1, 1999.
    [28] U. Pliquett, R. Langer and J. C. Weaver, “Changes in the passive electrical properties of human stratum corneum due to electroporation,” Biochimica et Biophysica Acta, 1239, 111, 1995.
    [29] D. A. Edwards, M. R. Prausnitz, R. Langer and J. C. Weaver, “Analysis of enhanced transdermal transport by skin electroporation,” Journal of Controlled Release, 34, 211, 1995.
    [30] L. P. Lee, S. A. Berger, D. Liepmann and L. Pruitt, “High aspect ratio polymer microstructures and cantilevers for biomems using low energy ion beam and photolithography,” Sensors and Actuators A, 71, 144, 1998.
    [31] I. Moser, G. Jobst and G. A. Urban, “Biosensor arrays for simultaneous measurement of glucose, lactate, glutamate and glutamine,” Biosensors and Bioelectronics, 17, 297, 2002.
    [32] L. Lauer, S. Ingebrandt, M. Scholl and A. Offenhausser, “Aligned microcontact printing of biomolecules on microelectronic device surfaces,” IEEE Transaction on Biomedical Engineering, 48, 838, 2002.
    [33] A. R. Denet, R. Vanbever and V. Pre´at, “Skin electroporation for transdermal and topical delivery,” Advanced Drug Delivery Reviews, 56, 659, 2004.

    [34] R. Vanbever, E. L. Boulenge and V. Pre´at, “Transdermal delivery of fentanyl by electroporation. I. influence of electrical factors,” Pharmaceutical Research, 13, 559, 1996.
    [35] A. Sharma, M. Kara, F. R. Smith and T. R. Krishnan, “Transdermal drug delivery using electroporation. I. factors influencing in vitro delivery of terazosin hydrochloride in hairless rats,” Journal of Pharmaceutical Sciences, 89, 528, 2000.
    [36] A. Roucoux, J. Schulz and H. Patin, “Reduced transition metal colloids: a novel family of reusable catalysts,” Chemical Reviews, 102, 3757, 2002.
    [37] G. F. Paciotti, D. G. I. Kingston and L. Tamarkin, “Colloidal gold nanoparticles: a novel nanoparticles platform for developing multifunctional tumor-targeted drug delivery vectors,” Drug Development Research, 67, 47, 2006.
    [38] R. K. Visaria, R. J. Griffin, B. W. Williams, E. S. Ebbini, G. F. Paciotti, C. W. Song and J. C. Bischof, “Enhancement of tumor thermal therapy using gold nanoparticle–assisted tumor necrosis factor-A delivery,” Molecular Cancer Therapeutics, 5, 1014, 2006.
    [39] B. Yu, C. Y. Dong, P. T. C. So, D. Blankschtein and R. Langer, “In vitro visualization and quantifcation of oleic acid induced changes in transdermal transport using two-photon fluorescence microscopy,” The Journal of Investigative Dermatology, 117, 16, 2001.
    [40] M. Heisig, R. Lieckfeldt, G. Wittum, G. Mazurkevich and G. Lee, “Non steady-state descriptions of drug permeation through stratum corneum. I. the biphasic brick-and-mortar model,” Pharmaceutical Research, 13, 421, 1996.
    [41] M. E. Garcia, L. A. Baker and R. M. Crooks, “Preparation and characterisation of dendrimer gold colloid monolayers,” Analytical Chemistry, 71, 256, 1999.
    [42] M. T. Reetz and W. Helbig, “Size-selective synthesis of nanostructured transition metal clusters,” Journal of the American Chemical Society, 116, 401, 1994.
    [43] M. T. Reetz, W. Helbig and S. A. Quaiser, “Electrochemical preparation of nanostructured bimetallic clusters,” Chemistry of Materials, 7, 227, 1995.
    [44] M. T. Reetz and S. A. Quaiser, “A new method for the preparation of nanostructured metal clusters,” Angewandte Chemie International Edition, 34, 240, 1995.
    [45] S. S. Chang, C. W. Shih, C. W. Chen, W. C. Lai and C. R. C. Wang, “The shape transition of gold nanorods,” Langmuir, 15, 701, 1999.
    [46] J. Belloni, M. Mastafavi, S. Remita, J. L. Marignier and M. O. Delcourt, “Radiation-induced synthesis of mono- and multi-metallic clusters and nanocolloids,” New Journal of Chemistry Articles, 22, 1257, 1998.
    [47] A. Henglein, “Physicochemical properties of small metal particles in solution: “Microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition,” Journal of Physical Chemistry, 97, 5457, 1993.
    [48] M. Treguer, C. Cointet, H. Remita, J. Khatouri, M. Mostafavi, J. Amblard, J. Belloni and R. Keyzer, “Dose rate on radiolytic synthesis of gold-silver bimetallic clusters in solution,” Journal of Physical Chemistry, 102, 4310, 1998.
    [49] H. Remita, J. Khatouri, M. Treguer, J. Amblard and J. Belloni, “Silver-palladium alloyed clusters synthesized by radiolysis,” Zeitschrift Fur Physik D - Atoms Molecules and Clusters, 40, 127, 1997.
    [50] T. Yonezawa, T. Sato, S. Kurada and K. Kuge, “Photochemical formation of colloidal silver: peptizing action of acetone ketyl radical,” Journal of the Chemical Society, 87, 1905, 1991.
    [51] M. Y. Han and C. H. Quek, “Photochemical synthesis in formamide and room-temperature coulomb staircase behavior of size-controlled cold nanoparticles,” Langmuir, 16, 362, 2000.
    [52] K. Okitsu, H. Bandow, Y. Maeda and Y. Nagata, “Sonochemical preparation of ultrafine palladium particles,” Chemistry Materials, 8, 315, 1996.
    [53] Y. Mizukoshi, K. Okitsu, Y. Maeda, T, A. Yamamoto, R. Oshima and Y. Nagata, “Sonochemical preparation of bimetallic nanoparticles gold/palladium in aqueous solution,” Journal of Physical Chemistry B, 101, 7033, 1997.
    [54] S. Link, Z. L. Wang and M. A. El-Sayed, “Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition,” Journal of Physical Chemistry B, 103, 3529, 1999.
    [55] N. Toshima, K. Kushihashi, T. Yonezawa and H. Hirai, “Colloidal dispersions of palladium-platinum bimetallic clusters protected by polymers,” Chemistry Letters, 18, 1769, 1989.
    [56] L. Sangregorio, M. Galeotti, U. Bardi and P. Baglioni, “Synthesis of Cu3Au nanocluster alloy in reverse micelles,” Langmuir, 12, 5800, 1996.
    [57] U. Kreibig and C. V. Z. Fragstein, “The limitation of electron mean free path in small silver particles,” Physical, 224, 307, 1969.
    [58] K. Selby, M. Vollmer, J. Masui, V. Kersin, W. De Heer and W. Knight, “Surface plasma resonances in free metal clusters,” Physical Review B, 40, 5417, 1989.
    [59] J. Lisiecki, F. Billoudet and M. P. Pileni, “Control of the shape and the size of copper metallic particles,” Journal of Physical Chemistry, 100, 4160, 1996.

    下載圖示 校內:2012-08-29公開
    校外:2012-08-29公開
    QR CODE