簡易檢索 / 詳目顯示

研究生: 陳麒任
Chen, Chi-Jen
論文名稱: 適用於偏移正交振幅調變濾波器組多載波空間多工系統之決策回授等化器
Decision Feedback Equalizers for Spatial Multiplexing Filter Bank Multicarrier with Offset Quadrature Amplitude Modulation
指導教授: 賴癸江
Lai, Kuei-Chiang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 57
中文關鍵詞: 決策回授等化器多輸入多輸出空間多工濾波器組多載波偏移正交振幅調變
外文關鍵詞: decision feedback equalizer, multi-input multi-output, spatial multiplexing, filter bank multicarrier, offset quadrature amplitude modulation
相關次數: 點閱:146下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文討論之偏移正交振幅調變濾波器組多載波空間多工(spatial multiplexing filter bank multicarrier with offset quadrature amplitude modulation, SM-FBMC)系統是未來世代行動通訊系統考慮之傳輸技術之一。相較於現行系統之正交分頻多工(orthogonal frequency division multiplexing, OFDM)技術,其頻譜具有較低之旁波瓣,對鄰近頻帶之使用者影響較小,可減少保護頻帶(guard band),也不須使用循環字首(cyclic prefix, CP),故具有較高之頻譜效率,且對頻率偏移的容忍度亦較高。然而,在頻率選擇性通道中,SM-FBMC系統之接收端必須有效地克服符元間、天線間、與子通道間干擾,方能提高偵測效能。目前文獻中針對SM-FBMC系統提出之偵測技術多屬奠基於線性等化器之偵測器。在頻率選擇性較嚴重之通道中,其偵測效能不彰(並導致錯誤率平層(error-rate floor)),且偵測延遲與運算複雜度極高。本論文貢獻有二:首先,我們提出兩種新型之偵測器架構,以決策回授等化器(decision feedback equalizer, DFE)為基礎,在不增加偵測延遲之前提下,使用多個回授濾波器(feedback filter, FBF)消除符元間、天線間、與子通道間干擾,使之提高偵測效能,消除錯誤率平層。再者,我們利用SM-FBMC的特殊訊號結構,提出更有效率但在數學上維持等價之等化器係數計算方式,使其計算等化器係數所需之運算複雜度較線性等化器更低。

    This thesis focuses on the spatial multiplexing filter bank multicarrier with offset quadrature amplitude modulation (SM-FBMC) system, which is one of the candidates for the future generation of mobile communication systems. SM-FBMC employs the prototype filter that has very small spectral side lobes, which gives the following advantages over orthogonal frequency division multiplexing (OFDM): (1) The spectral guard bands can be reduced, and the cyclic prefix (CP) is not required. (2) It is less sensitive to the frequency offset. In frequency-selective channels, however, inter-symbol interference (ISI), inter-antenna interference (IAI), and inter-subchannel interference (ICI) arise as major sources of performance impairments in SM-FBMC systems, which calls for advanced detectors to attain a satisfactory performance. In the literature, the linear equalizer (LE) based detectors were proposed for SM-FBMC systems. The performances of them are usually limited by error-rate floors in highly frequency-selective channels, and they suffer from a high computational complexity and a considerable increase in detection latency. The contributions of the thesis include the following. First, we propose new decision feedback equalizer (DFE) based detectors that use multiple feedback filters to cancel ISI, IAI, and/or ICI. These detectors achieve a significant performance gain over the conventional DFE and remove the error-rate floor, but without increasing the detection latency. Second, by exploiting the special structures of SM-FBMC signals, we obtain a more efficient, and yet mathematically equivalent, method of computing the DFE coefficients that even requires a smaller complexity (in calculating the equalizer coefficients) than LE.

    摘要 II Extended Abstract III 誌謝 VI 目錄 VII 表目錄 IX 圖目錄 X 第一章 導論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 章節提要 3 1.4 論文貢獻 3 第二章 訊號模型 5 2.1 傳送訊號模型[7] 5 2.1.1 連續時間傳送訊號模型 5 2.1.2 離散時間傳送訊號模型 6 2.2 接收訊號模型 9 2.2.1 接收訊號純量模型 9 2.2.2 接收訊號向量模型 10 第三章 最小均方誤差線性等化器[1] 12 3.1 最小均方誤差線性等化 12 3.1.1 偶數模式 14 3.1.2 奇數模式 15 3.1.3 等化器係數性質 17 3.1.4 等化器係數性質證明 17 3.2 連續干擾消除 19 3.3 排序式連續干擾消除 20 第四章 最小均方誤差決策回授等化器 22 4.1 SA-SB DFE 22 4.1.1 偶數模式 23 4.1.2 奇數模式 24 4.1.3 等化器係數性質 25 4.1.4 等化器係數性質證明 27 4.2 MA-SB決策回授等化器 29 4.2.1 偶數模式 29 4.2.2 奇數模式 30 4.2.3 等化器係數性質 31 4.3 MA-MB DFE 33 4.3.1 偶數模式 33 4.3.2 奇數模式 35 4.3.3 等化器係數性質 35 第五章 複雜度分析 38 5.1 基於最小均方誤差線性等化器 39 5.1.1 最小均方誤差線性等化器 39 5.1.2 連續干擾消除 39 5.1.3 排序式連續干擾消除 40 5.2 基於最小均方誤差決策回授等化器 41 5.2.1 SA-SB DFE 41 5.2.2 MA-SB DFE 42 5.2.3 MA-MB最小均方誤差決策回授等化器 43 第六章 電腦模擬與結果分析 44 6.1 模擬環境與模擬參數 44 6.2 等化器參數設定 46 6.2.1 決定等化器參數 46 6.3 模擬結果與分析 48 6.3.1 2×2天線模擬結果 48 6.3.1 4×4天線模擬結果 51 6.3.2 DFE系列複雜度比較 53 第七章 結論與未來研究方向 55 7.1 結論 55 7.2 未來研究方向 55 參考文獻 56

    [1] A. Ikhlef and J. Louveaux, “Per-subchannel equalization for MIMO FBMC/OQAM systems,” in Proc. IEEE Pacific Rim Conf. Commun., Comput. Signal Process., Victoria, BC, Canada, Aug. 2009, pp. 559–564.
    [2] D. S. Walhauser, L.G. Baltar and J. A. Nossek, “MMSE subcarrier equalization for filter bank based multicarrier systems,” IEEE SPAWC 2008, pp. 525-529, Recife, 6-9 July 2008.
    [3] L. G. Baltar, D. S. Waldhauser and J.A. Nossek,, “MMSE subchannel decision feedback equalization for filter bank based multicarrier systems,” IEEE ISCAS 2009, pp. 2802-2805, Taipei, 24-27 May 2009.
    [4] Kuei-Chiang Lai, Yung-Jie Huang, Chun-Ting Chen, Cheng-Feng Lin "A Family of MMSE-Based Decision Feedback Equalizers and Their Properties for FBMC/OQAM Systems," in IEEE Transactions on Vehicular Technology, vol. 68, no. 3, pp. 2346-2360, March 2019 .
    [5] B. Farhang-Boroujeny and C. Yuen, “Cosine modulated and offset QAM filter bank multicarrier techniques: a continuous-time prospect,” EURASIP J. Advances in Sig. Proc., vol. Dec., pp. 1–6, 2010.
    [6] B. Farhang-Boroujeny, "OFDM versus filter bank multicarrier," IEEE Signal Processing Mag., April 2011, pp. 92-112.
    [7] P. Siohan, C. Siclet, and N. Lacaille, “Analysis and design of OFDM/OQAM systems based on filterbank theory,” IEEE Trans. Signal Processing, vol. 50, no. 5, pp. 1170–1183, May 2002.
    [8] A. Ikhlef and J. Louveaux,, “An enhanced MMSE per subchannel equalizer for highly frequency selective channels for FBMC/OQAM systems,” IEEE SPAWC 2009, pp. 186-190, Perugia, 21-24 June 2009.
    [9] S. Mirabbasi and K. Martin, “Overlapped complex-modulated transmultiplexer filters with simplified design and superior stopbands,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 50, no. 8, pp. 456–469, 2003
    [10] M. G. Bellanger, “Specification and design of a prototype filter for filter bank based multicarrier transmission,” IEEE Int. Conf. Acoustics, Speech, and Signal Processing, vol.4, pp. 2417-2420, Salt Lake City, 07-11 May 2001.
    [11] A. Viholainen, T. Ihalainen, T. H. Stitz, M. Renfors and B. G. Bellanger, “Prototype filter design for filter bank based multicarrier transmission,” IEEE, Signal Processing Conference, pp. 1359-1363, Glasgow, 24-28 Aug. 2009.
    [12] P. W. Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela, “V-BLAST: An architecture for realizing very high data rates over the rich-scattering wireless channel,” in Proc. URSI Int. Symp. Signals, Syst., Electron, Pisa, Italy, Oct. 1998, pp. 295–300.
    [13] X. Mestre, M. Majoral, and S. Pfletschinger, “An asymptotic approach to parallel equalization of filter bank multicarrier signals,” IEEE Trans. Signal Process., vol. 61, no. 14, pp. 3592–3606, Jul. 2013.
    [14] A. I. Pérez-Neira et al., ‘‘MIMO signal processing in offset-QAM based filter bank multicarrier systems,’’ IEEE Trans. Signal Process., vol. 64, no. 21, pp. 5733–5762, Nov. 2016.
    [15] V. Erceg et al., “Channel Models for Fixed Wireless Applications” IEEE 802.16.3c-01/29r1, Feb. 23, 2001.
    [16] T. Ihalainen, A. Ikhlef, J. Louveaux, and M. Renfors, “Channel equalization for multi-antenna FBMC/OQAM receivers,” IEEE Transactions on Vehicular Technology, vol. 60, no. 5, pp. 2070–2085, Jun 2011.
    [17] T. Ihalainen, T. Hidalgo Stitz, M. Rinne, and M. Renfors, “Channel equalization in filter-bank-based multicarrier modulation for wireless communications,” EURASIP J. Adv. Signal Process., vol. 2007, pp. 1–18, 2007, Article ID 49389.

    下載圖示 校內:2019-08-14公開
    校外:2024-08-01公開
    QR CODE