簡易檢索 / 詳目顯示

研究生: 廖堉凱
Liao, Yu-Kai
論文名稱: 發展縮放式蒙地卡羅法快速獲取樣本表層之參數
Development of the scaling Monte Carlo method for rapid recovery of superficial volumes of samples
指導教授: 曾盛豪
Tseng, Sheng-Hao
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 70
中文關鍵詞: 吸收係數散射係數漫反射光譜學縮放蒙地卡羅模型
外文關鍵詞: Absorption Coefficient, Reduced Scattering Coefficient, Diffuse Reflectance Spectroscopy, Scaling Monte Carlo algorithm
相關次數: 點閱:119下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中我們使用頻域光子遷移系統的光學方法去量測生物組織的生理參數,它是使用波長808奈米的近紅外光來量測樣本,且由於量測樣本淺層的需要,現有的擴散方程在短的偵測距離並不適合作為光傳播理論模型去精確地得知樣本的物理參數,因此我們建構快速的縮放式蒙地卡羅法作為理論模型。在這篇論文中,首先我們會先驗證我們所建構的縮放式蒙地卡羅的正確性;接著利用液態假體和固態假體的實驗來驗證利用此模型所得到的光學參數的正確性。我們利用這套系統設計了一套實驗架構來量測模擬黑色素瘤的假體;此假體乃利用矽膠製成。希望能夠經由這個實驗能夠評估腫瘤的光學性質以及其厚度。最後將這套模型用在我們所設計用來評估腫瘤性質的實驗中,計算出我們所需的物理參數,如腫瘤的吸收係數、散射係數和評估隨著腫瘤的生長厚度的變化,最後我們證明這個實驗架構在假體的研究中是可行的。

    In this thesis, we will use the frequency-domain migration (FDPM) system with a 808 nm laser to quantify physical parameters of biological tissues. In order to obtain the information from superficial volumes of sample, we will conduct the measurement at a short source-detector separation. Because the diffusion theory is not valid under this situation, we establish the scaling Monte Carlo method to be a proper model that describes transportation of photons at a short source-detector separation. We will first confirm the correctness of the scaling Monte Carlo before it is used to determine the optical properties of the liquid phantoms and solid phantoms. Further, we use this system to design a measurement protocol which is employed to evaluate the melanoma phantom. The melanoma phantom is fabricated by silicone. We will determine the physical parameters such as absorption coefficient, scattering coefficient and thickness of the tumor phantoms and understand the performance of the proposed measurement protocol.

    Abstract (in Chinese) I Abstract (in English) II Acknowledgement III Contents IV List of Tables VI List of Figures VII List of Symbols X Chapter 1 Introduction 1 Chapter 2 Theoretical background 4 2.1 Diffusion theory 4 2.1.1 Semi-infinite medium 6 2.1.2 Two-layered medium 8 2.2 Monte Carlo 11 2.3 Scaling Monte Carlo 16 2.3.1 Semi-infinite medium 16 2.3.2 Two-layered medium 18 Chapter 3 Materials and methods 22 3.1 Frequency domain migration system 22 3.2 Liquid phantom 24 3.3 Solid phantom 27 3.4 Melanoma phantom measurement 29 3.4.1 Fabrication process of the tumor phantom 30 3.4.2 Measurement of the tumor phantom 32 3.5 Optical properties determination 35 Chapter 4 Results and discussion 38 4.1 The validity of scaling Monte Carlo 38 4.2 Recovery of optical properties by using scaling Monte Carlo 47 4.3 Melanoma phantom measurements by FDPM system 53 Chapter 5 Conclusion and future work 62 5.1 Conclusion 62 5.2 Future work 64 Reference 67

    1. I. Nishidate, Y. Aizu, and H. Mishina, "Estimation of melanin and hemoglobin in skin tissue using multiple regression analysis aided by Monte Carlo simulation," Journal of Biomedical Optics 9, 700-710 (2004).
    2. H. Arimoto, M. Egawa, and Y. Yamada, "Depth profile of diffuse reflectance near-infrared spectroscopy for measurement of water content in skin," Skin Research and Technology 11, 27-35 (2005).
    3. A. Kienle, and T. Glanzmann, "In vivo determination of the optical properties of muscle with time-resolved reflectance using a layered model," Physics in Medicine and Biology 44, 2689 (1999).
    4. L. Wang, and S. L. Jacques, Monte Carlo Modeling of Light
    Transport in Multi-Layered Tissues in Standard C (University
    of Texas M. D. Anderson Cancer Center, Houston, Tex, 1992-1993).
    5. Q. Liu, and N. Ramanujam, "Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media," J. Opt. Soc. Am. A 24, 1011-1025 (2007).
    6. "Cancer facts and figures 2009," (American Cancer Society), http://www.cancer.org/docroot/STT/content/STT_1x_Cancer_Facts__Figures_2009.asp?from=fast.
    7. "性別統計圖像與分析 " (Department of Health, Exclusive Yuan, R.O.C. (Taiwan)), http://www.doh.gov.tw/CHT2006/DM/DM2_2.aspx?now_fod_list_no=10177&class_no=440&level_no=2.
    8. P. G. Buettner, U. Leiter, T. K. Eigentler, and C. Garbe, "Development of prognostic factors and survival in cutaneous melanoma over 25 years," Cancer 103, 616-624 (2005).
    9. A. Breslow, "Thickness, cross-sectional areas and depth of invasion in the prognosis of cutaneous melanoma," Annals of surgery 172, 902-908 (1970).
    10. A. F. Fercher, "Optical coherence tomography," Journal of Biomedical Optics 1, 157-173 (1996).
    11. Y. N. Mirabal, S. K. Chang, E. N. Atkinson, A. Malpica, M. Follen, and R. Richards-Kortum, "Reflectance spectroscopy for in vivo detection of cervical precancer," Journal of Biomedical Optics 7, 587-594 (2002).
    12. A. Garcia-Uribe, N. Kehtarnavaz, G. Marquez, V. Prieto, M. Duvic, and L. V. Wang, "Skin Cancer Detection by Spectroscopic Oblique-Incidence Reflectometry: Classification and Physiological Origins," Appl. Opt. 43, 2643-2650 (2004).
    13. E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, "Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range," Journal of Biomedical Optics 11, 064026-064026 (2006).
    14. J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, and B. J. Tromberg, "Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject," Appl. Opt. 36, 10-20 (1997).
    15. A. J. Berger, V. Venugopalan, A. J. Durkin, T. Pham, and B. J. Tromberg, "Chemometric Analysis of Frequency-Domain Photon Migration Data: Quantitative Measurements of Optical Properties and Chromophore Concentrations in Multicomponent Turbid Media," Appl. Opt. 39, 1659-1667 (2000).
    16. G. Zonios, J. Bykowski, and N. Kollias, "Skin Melanin, Hemoglobin, and Light Scattering Properties can be Quantitatively Assessed In Vivo Using Diffuse Reflectance Spectroscopy," 117, 1452-1457 (2001).
    17. Edwards, and Duntley, "The pigment and color of human skin," Am J Anat 65, 1-33 (1939).
    18. Young, "Chromophores in human skin," Phys Med Biol 42, 789-802 (1997).
    19. Schmitt, and G. Kumar, "Turbulent nature of refractive-index variations in biological tissue," Opt Lett 21, 1310-1312 (1996).
    20. S. F. Malin, T. L. Ruchti, T. B. Blank, S. N. Thennadil, and S. L. Monfre, "Noninvasive Prediction of Glucose by Near-Infrared Diffuse Reflectance Spectroscopy," Clinical Chemistry 45, 1651-1658 (1999).
    21. C. E. Elwell, M. Cope, A. D. Edwards, J. S. Wyatt, D. T. Delpy, and E. O. Reynolds, "Quantification of adult cerebral hemodynamics by near-infrared spectroscopy," Journal of Applied Physiology 77, 2753-2760 (1994).
    22. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and Johnson, "Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics," Appl Opt 37, 3586-3593 (1998).
    23. A. H. Hielscher, J. R. Mourant, and I. J. Bigio, "Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions," Appl. Opt. 36, 125-135 (1997).
    24. F. Bevilacqua, P. Marquet, O. Coquoz, and C. Depeursinge, "Role of tissue structure in photon migration through breast tissues," Appl. Opt. 36, 44-51 (1997).
    25. I. S. Saidi, S. L. Jacques, and F. K. Tittel, "Mie and Rayleigh modeling of visible-light scattering in neonatal skin," Appl. Opt. 34, 7410-7418 (1995).
    26. T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, "Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy," Review of Scientific Instruments 71, 2500-2513 (2000).
    27. L. V. WANG, and H.-I. WU, Biomedical Optics:principles and imagine (John Wiley & Sons, Inc., New Jercy, 2007).
    28. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, "Boundary conditions for the diffusion equation in radiative transfer," J. Opt. Soc. Am. A 11, 2727-2741 (1994).
    29. T. J. Farrell, M. S. Patterson, and B. Wilson, "A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo," Med Phys 19, 879-888 (1992).
    30. M. S. Patterson, S. J. Madsen, J. D. Moulton, and B. C. Wilson, "Diffusion equation representation of photon migration in tissue," in Microwave Symposium Digest, 1991., IEEE MTT-S International(1991), pp. 905-908 vol.902.
    31. A. Kienle, M. S. Patterson, N. Dögnitz, R. Bays, G. Wagnieres, and H. van den Bergh, "Noninvasive Determination of the Optical Properties of Two-Layered Turbid Media," Appl. Opt. 37, 779-791 (1998).
    32. T. Sheng-Hao, C. K. Hayakawa, H. Spanier, and A. J. Durkin, "Determination of Optical Properties of Superficial Volumes of Layered Tissue Phantoms," Biomedical Engineering, IEEE Transactions on 55, 335-339 (2008).
    33. L. Wang, S. L. Jacques, and L. Zheng, "MCML—Monte Carlo modeling of light transport in multi-layered tissues," Computer Methods and Programs in Biomedicine 47, 131-146 (1995).
    34. M. Testorf, U. Österberg, B. Pogue, and K. Paulsen, "Sampling of Time- and Frequency-Domain Signals in Monte Carlo Simulations of Photon Migration," Appl. Opt. 38, 236-245 (1999).
    35. I. V. Yaroslavsky, A. N. Yaroslavsky, V. V. Tuchin, and H. J. Schwarzmaier, "Effect of the scattering delay on time-dependent photon migration in turbid media," Appl Opt 36, 6529-6538 (1997).
    36. G. M. Palmer, and N. Ramanujam, "Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms," Appl. Opt. 45, 1062-1071 (2006).
    37. G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, "Monte Carlo-based inverse model for calculating tissue optical properties. Part II: Application to breast cancer diagnosis," Appl. Opt. 45, 1072-1078 (2006).
    38. A. Kienle, and M. S. Patterson, "Determination of the optical properties of turbid media from a single Monte Carlo simulation," Physics in Medicine and Biology 41, 2221 (1996).
    39. H. J. Van Staveren, C. J. Moes, J. Van Marle, S. A. Prahl, and M. J. Van Gemert, "Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm," Appl. Opt 30, 4507-4514 (1991).
    40. "Silicone Phantom Instructions (Breast Phantom) " (University of California Irvine. Network for Translational Research Optical Imagine), http://www.bli.uci.edu/ntroi/pubs/pdf/si_recipe.pdf.
    41. J. L. Sandell, and T. C. Zhu, "A review of in-vivo optical properties of human tissues and its impact on PDT," Journal of Biophotonics 4, 773-787 (2011).
    42. A. M. Grant, K. Sry, R. Saager, F. Ayers, T. J. Pfefer, K. M. Kelly, S.-H. Tseng, and A. J. Durkin, "Diffuse optical spectroscopy of melanoma-simulating silicone phantoms," 718702-718702 (2009).
    43. P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, "In vivo absorption and scattering spectroscopy of biological tissues," Photochemical & Photobiological Sciences 2, 124-129 (2003).
    44. S.-H. Tseng, A. Grant, and A. J. Durkin, "In vivo determination of skin near-infrared optical properties using diffuse optical spectroscopy," Journal of Biomedical Optics 13, 014016-014016 (2008).
    45. E. Alerstam, W. C. Lo, T. D. Han, J. Rose, S. Andersson-Engels, and L. Lilge, "Next-generation acceleration and code optimization for light transport in turbid media using GPUs," Biomedical optics express 1, 658-675 (2010).

    下載圖示 校內:2016-08-05公開
    校外:2018-08-05公開
    QR CODE