| 研究生: |
張舜閔 Zhang, Shun-Min |
|---|---|
| 論文名稱: |
奈米結構的鎳鐵磷合金:電合成及其在中性下產氫反應的應用 Nanostructured nickel-iron-phosphorus alloy:electrosynthesis and application for hydrogen evolution reaction at neutral pH |
| 指導教授: |
林家裕
Lin, Chia-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 產氫反應 、中性條件 、鎳鐵磷合金 、電沉積 |
| 外文關鍵詞: | Electrodeposition, Hydrogen evolution reaction, Neutral condition, Nickel-iron-phosphorus alloy |
| 相關次數: | 點閱:115 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,我們利用電化學沉積法合成具奈米結構的鎳鐵磷合金,並將其應用在中性環境下產氫反應。此電觸媒的物化特性是透過掃描式電子顯微鏡、拉曼光譜儀、感應耦合電漿原子發射光譜儀、X光光電子能譜儀、線性掃描伏安法、循環伏安法和計時電位法來進行分析。結果發現電鍍電流密度和電鍍液的組成對所製備的鎳鐵磷合金電觸媒的表面型態以及化學組成具有極大的影響。例如,在高電流密度(geq -2 mA cm-2)、低Ni/Fe莫爾數(le 2)比和不含磷的濃度(0 M)之條件下,可製備出具奈米立方體結構之鎳鐵磷合金,而在低電流密度、低鐵濃度和含有不同磷濃度之條件下,則可製備出具奈米球形結構之鎳鐵磷合金。此外,在最佳的合成條件下所製備之鎳鐵磷合金電觸媒表現出優良的產氫活性,在中性環境下分別需要260.5±0.01 和200 mV之過電位去達到10 mA cm-2的電流密度以及37.29±5.81的轉換頻率。
In this study, nanostructured nickel-iron-phosphorus alloys (nanoNiFePx) were synthesized by electrochemical deposition and their applications as the electrocatalysts for the hydrogen evolution reaction (HER) were investigated. The physicochemical properties of the prepared nanoNiFePx were characterized using scanning electron microscopy, Raman spectroscopy, inductively coupled plasma mass spectrometry, and X-ray photoelectron spectroscopy, linear sweep voltammetry, cyclic voltammetry, and chronopotentiometry. It was found that deposition current density and composition of plating solution used for the electrosynthesis of nanoNiFePx had great influences on the surface morphology and chemical composition of the prepared nanoNiFePx. For example, electrodeposition with high deposition current density (geq -2 mA cm-2), low Ni/Fe molar ratio (le 1), or phosphorus-free content (0 M) resulted in the formation of NiFePx nanocubes, whereas electrodeposition with low deposition current density, low iron content, or any amount of phosphorus favored the formation of NiFePx nanospheres. In addition, nanoNiFePx prepared with optimal synthetic conditions exhibited the best HER activity, requiring overpotentials of 260.5±0.01 and 200 mV to achieve a current density of 10 mA cm-2 and turnover frequency of 37.29±5.81 h-1 at neutral pH, respectively.
1. Faber, M.S. and S. Jin, Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci., 2014. 7(11): p. 3519-3542.
2. Zhang, J. and X. Wang, Solar Water Splitting at lambda=600 nm: A Step Closer to Sustainable Hydrogen Production. Angew Chem Int Ed Engl, 2015. 54(25): p. 7230-2.
3. Therese, G. H. A.; Kamath, P. V. Electrochemical Synthesis of Metal Oxides and Hydroxides. Chem. Mater. 2000, 12, 1195−1204.
4. Trasatti, S. Work function, electronegativity, and electrochemical behaviour of metals. J. Electroanal. Chem, 1972, 39, 163-184.
5. Shi, Y. and B. Zhang, Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem Soc Rev, 2016. 45(6): p. 1529-41.
6. Lewis, N.S. and D.G. Nocera, Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci U S A, 2006. 103(43): p. 15729-35.
7. Jiao, Y., et al., Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem Soc Rev, 2015. 44(8): p. 2060-86.
8. Herrasti, P.; Diaz, R.; Ocon, P. Electrodeposition of platinum, iridium, ruthenium, and platinum in poly(4-vinylpyridine) films for electrocatalysis. Anal Chem, 1990, 62, 151-157.
9. Trueba, M., S.P. Trasatti, and S. Trasatti, Electrocatalytic activity for hydrogen evolution of polypyrrole films modified with noble metal particles. Mater. Chem, 2006. 98(1): p. 165-171.
10. Liu, H., et al., High surface area nanoporous platinum: facile fabrication and electrocatalytic activity. NNOTER, 2006. 17(9): p. 2167-2173.
11. Pourbaix, M. Atlas of electrochemical equilibria in aqueous solutions; NACE: Houston, TX, 1974.
12. Chu, S.-Z.; Wada, K.; Inoue, S.; Todoroki, S.-I. Fabrication and Characteristics of Ordered Ni Nanostructures on Glass by Anodization and Direct Current Electrodeposition. Chem. Mater. 2002, 14, 4595−4602.
13. Marozzi, C. A.; Chialvo, A. C. Development of Electrode Morphologies of Interest in Electrocatalysis. Part 1 Electrodeposited Porous Nickel Electrodes. Electrochim. Acta 2000, 45, 2111−2120.
14. Marozzi, C. A.; Chialvo, A. C. Development of Electrode Morphologies of Interest in Electrocatalysis Part 2 Hydrogen Evolution Reaction on Macroporous Nickel Electrodes. Electrochim. Acta 2001, 46, 861−866.
15. Navarro-Flores, E., Z. Chong, and S. Omanovic, Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium. J. Mol. Catal A: Chem, 2005. 226(2): p. 179-197.
16. Jaksic, M. M. Hypo-Hyper-d-Electronic Interactive Nature of Interionic Synergism in Catalysis and Electrocatalysis for Hydrogen Reactions. Int. J. Hydrogen Energy 2001, 26, 559−578.
17. Highfield, J. G.; Claude, E.; Oguro, K. Electrocatalytic Synergism in NiMo Cathodes for Hydrogen Evolution in Acidic Medium A New Model. Electrochim. Acta 1999, 44, 2805−2814.
18. Krstajic, N., et al., Electrodeposition of Ni–Mo alloy coatings and their characterization as cathodes for hydrogen evolution in sodium hydroxide solution. Int. J. Hydrog. Energy, 2008. 33(14): p. 3676-3687.
19. Hong, S.H., et al., High-activity electrodeposited NiW catalysts for hydrogen evolution in alkaline water electrolysis. Appl. Surf. Sci., 2015. 349: p. 629-635.
20. Videa, M., et al., NiMo Nanoparticles Electrodeposited by Pulsed Current and Their Catalytic Properties for Hydrogen Production. J. New Mater. Electrochem. Syst, 2013. 16(3): p. 177-182.
21. Videa, M.; Crespo, D.; Casillas, G.; Zavala, G. Electrodeposition of Nickel-Molybdenum Nanoparticles for Their use as Electrocatalyst for the Hydrogen Evolution Reaction. J. New Mater. Electrochem. Syst 2010, 1.
22. Cao, S., et al., Cobalt phosphide as a highly active non-precious metal cocatalyst for photocatalytic hydrogen production under visible light irradiation. J. Mater. Chem. A, 2015. 3(11): p. 6096-6101.
23. Xu, Y., et al., Anion-exchange synthesis of nanoporous FeP nanosheets as electrocatalysts for hydrogen evolution reaction. Chem Commun (Camb), 2013. 49(59): p. 6656-8.
24. Popczun, E.J., et al., Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc, 2013. 135(25): p. 9267-70.
25. Tian, J., et al., Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0-14. J Am Chem Soc, 2014. 136(21): p. 7587-90.
26. Tian, J., et al., Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water. Angew Chem Int Ed Engl, 2014. 53(36): p. 9577-81.
27. Xiao, P., et al., Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ. Sci., 2014. 7(8): p. 2624-2629.
28. Wang, X., Y.V. Kolen'ko, and L. Liu, Direct solvothermal phosphorization of nickel foam to fabricate integrated Ni2P-nanorods/Ni electrodes for efficient electrocatalytic hydrogen evolution. Chem Commun (Camb), 2015. 51(31): p. 6738-41.
29. Saadi, F.H., et al., CoP as an Acid-Stable Active Electrocatalyst for the Hydrogen-Evolution Reaction: Electrochemical Synthesis, Interfacial Characterization and Performance Evaluation. J. Phys. Chem. C, 2014. 118(50): p. 29294-29300.
30. Ping Liu and Jose´ A. Rodriguez Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P(001) surface the importance of ensemble effect. J. Am. Chem. Soc., 2005, 127, 14871-14878.
31. Callejas, J.F., et al., Nanostructured Co2P Electrocatalyst for the Hydrogen Evolution Reaction and Direct Comparison with Morphologically Equivalent CoP. Chem. Mater, 2015. 27(10): p. 3769-3774.
32. Carenco, S., et al., Nanoscaled metal borides and phosphides: recent developments and perspectives. Chem Rev, 2013. 113(10): p. 7981-8065.
33. Anantharaj, S. and V. Aravindan, Developments and Perspectives in 3d Transition‐Metal‐Based Electrocatalysts for Neutral and Near‐Neutral Water Electrolysis. Adv. Energy Mater, 2019. 10(1): p. 1902666.
34. Gong, M., et al., Blending Cr2O3 into a NiO-Ni electrocatalyst for sustained water splitting. Angew Chem Int Ed Engl, 2015. 54(41): p. 11989-93.
35. Gong, M., et al., Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat Commun, 2014. 5: p. 4695.
36. Cao, E., et al., Boron-Induced Electronic-Structure Reformation of CoP Nanoparticles Drives Enhanced pH-Universal Hydrogen Evolution. Angew Chem Int Ed Engl, 2020. 59(10): p. 4154-4160.
37. Fang, Z., et al., Dual Tuning of Ni-Co-A (A = P, Se, O) Nanosheets by Anion Substitution and Holey Engineering for Efficient Hydrogen Evolution. J Am Chem Soc, 2018. 140(15): p. 5241-5247.
38. Zhang, X., et al., Iron-Doped Cobalt Monophosphide Nanosheet/Carbon Nanotube Hybrids as Active and Stable Electrocatalysts for Water Splitting. Adv. Funct. Mater, 2017. 27(24): p. 1606635.
39. Zhang, X., et al., Molybdenum Phosphide/Carbon Nanotube Hybrids as pH-Universal Electrocatalysts for Hydrogen Evolution Reaction. Adv. Funct. Mater, 2018. 28(16): p. 1706523.
40. Zhu, Y.-P., et al., Self-Supported Cobalt Phosphide Mesoporous Nanorod Arrays: A Flexible and Bifunctional Electrode for Highly Active Electrocatalytic Water Reduction and Oxidation. Adv. Funct. Mater, 2015. 25(47): p. 7337-7347.
41. Liu, J., et al., S-NiFe2O4 ultra-small nanoparticle built nanosheets for efficient water splitting in alkaline and neutral pH. Nano Energy, 2017. 40: p. 264-273.
42. Feng, L.L., et al., High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J Am Chem Soc, 2015. 137(44): p. 14023-6.
43. Dinh, C.-T., et al., Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules. Nat Energy, 2018. 4(2): p. 107-114.
44. Sun, Y., et al., Electrodeposited cobalt-sulfide catalyst for electrochemical and photoelectrochemical hydrogen generation from water. J Am Chem Soc, 2013. 135(47): p. 17699-702.
45. Liu, B., et al., Nickel-Cobalt Diselenide 3D Mesoporous Nanosheet Networks Supported on Ni Foam: An All-pH Highly Efficient Integrated Electrocatalyst for Hydrogen Evolution. Adv Mater, 2017. 29(19).
46. Greeley, J., et al., Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater, 2006. 5(11): p. 909-13.
47. Pan, Y., et al., Monodispersed nickel phosphide nanocrystals with different phases: synthesis, characterization and electrocatalytic properties for hydrogen evolution. J. Mater. Chem. A, 2015. 3(4): p. 1656-1665.
48. Gao, M.Y., et al., Scalable one-step electrochemical deposition of nanoporous amorphous S-doped NiFe2O4/Ni3Fe composite films as highly efficient electrocatalysts for oxygen evolution with ultrahigh stability. J. Mater. Chem. A, 2018. 6(4): p. 1551-1560.
49. Sajjadnejad, M., et al., Preparation and corrosion resistance of pulse electrodeposited Zn and Zn–SiC nanocomposite coatings. Appl. Surf. Sci., 2014. 300: p. 1-7.
50. Mohajeri, S., A. Dolati, and S. Rezagholibeiki, Electrodeposition of Ni/WC nano composite in sulfate solution. Mater. Chem. Phys, 2011. 129(3): p. 746-750.
51. Sharma, A., et al., A Study on the Effect of Pulse Electrodeposition Parameters on the Morphology of Pure Tin Coatings. Metall Mater Trans A, 2014. 45(10): p. 4610-4622.
52. Hu, C.-C. and A. Bai, The Inhibition of Anomalous Codeposition of Iron-Group Alloys Using Cyclic Voltammetry. J. Electrochem. Soc, 2002. 149(11): p. C615.
53. Yih-Min YEH, Chin-Sung CHEN, Ming-Hung TSAI, Yih-Chuen SHYNG Sheng-Yang LEE and Keng-Liang OU, Effect of pulse-reverse current on microstructure and properties of electroformed nickel–iron mold insert. Jpn. J. Appl. Phys, 2005, 44, 1086–1090.
54. A. J. Bard and L. R. Faulkner, Electrochemical methods fundamentals and applications, JOHN WILEY SONS INC ,NewYork, 1980.
55. H. Dahms and I. M. Croll, The anomalous codeposition of iron‐nickel alloys, J. Electrochem. Soc, 1965, 112, 771–775.
56. Hengne, A.M., et al., Ni-Sn-Supported ZrO2 Catalysts Modified by Indium for Selective CO2 Hydrogenation to Methanol. ACS Omega, 2018. 3(4): p. 3688-3701.
57. Mansour, A.N., Characterization of β‐Ni(OH)2 by XPS. Surf. Sci. Spectra, 1994. 3(3): p. 239-246.
58. Beng Jit Tan, Kenneth J. Klabunde, and Peter . A. Sherwood, X-ray Photoelectron Spectroscopy Studies of Solvated Metal Atom Dispersed Catalysts. Monometallic Iron and Bimetallic Iron-Cobalt Particles on Alumina, Chem. Mater, 1990, 2, 186-191.
59. Zhang, B., et al., One-step controlled electrodeposition of iron-based binary metal organic nanocomposite. Appl. Surf. Sci, 2020. 504.
60. Ren, Q., et al., Hydrogen evolution reaction catalyzed by nickel/nickel phosphide nanospheres synthesized through electrochemical methods. Electrochimica Acta, 2019. 298: p. 229-236.
61. Gao, L., et al., DNA@Mn3(PO4)2 Nanoparticles Supported with Graphene Oxide as Photoelectrodes for Photoeletrocatalysis. Nanoscale Res Lett, 2017. 12(1): p. 17.
62. Zhou, T., et al., Transition metal ions regulated oxygen evolution reaction performance of Ni-based hydroxides hierarchical nanoarrays. Sci Rep, 2017. 7: p. 46154.
63. Zhu, K., et al., Interface-Engineered Ni(OH)2 /beta-like FeOOH Electrocatalysts for Highly Efficient and Stable Oxygen Evolution Reaction. Chem Asian J, 2017. 12(20): p. 2720-2726.
64. Mancio, M., et al., Electrochemical and in-situ SERS Study of Passive Film Characteristics and Corrosion Performance of 9%Cr Microcomposite Steel in Highly Alkaline Environments. J. ASTM Int, 2009. 6(5).
65. Kim, J., et al., In situ Raman spectroscopic analysis of surface oxide films on Ni-base alloy/low alloy steel dissimilar metal weld interfaces in high-temperature water. J. Nucl. Mater, 2014. 449(1-3): p. 181-187.
校內:2030-07-27公開