簡易檢索 / 詳目顯示

研究生: 謝濰岡
Hsieh, Wei-Kang
論文名稱: 氧化鋅光檢測器嵌入奈米銀介面層之熱處理研究
Investigation of thermal treatment for ZnO photodetector with Ag nano-interlayer
指導教授: 張守進
Chang, Shoou-Jinn
陳志方
Chen, Jone-Fang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 62
中文關鍵詞: 氧化鋅氧化銀熱回火
外文關鍵詞: ZnO, Ag2O, Anneal process
相關次數: 點閱:84下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化鋅是近年來受到高度關注並已投入大量研究的半導體材料之一。它本身具有多項優點,包含寬且直接的能隙(室溫下約3.37電子伏特)及大的激子束縛能(室溫下約60毫電子伏特),加上其在熱穩定性及化學穩定性上都有相當不錯的表現。因此,相當適合應用在光電元件上。但,在製備元件的半導體製程中,溫度的上升是個不可避免的情況。而熱效應對於半導體本身的特性具有相當程度的影響。因此,本論文主要著重於以氧化鋅薄膜為基底之金半金紫外光檢測器的製備,與光檢測器經由熱處理藉以模擬半導體製程的升溫現象後所產生影響之研究。
    首先,利用共濺鍍系統在石英玻璃基板上沉積出一層氧化鋅主動層(厚度約100奈米)。此外,也取出部分樣品並在基板與氧化鋅主動層間利用電子束蒸鍍機以蒸鍍方式插入不同厚度的銀金屬層(厚度約2奈米與5奈米)。之後將製備完成的三種樣品(氧化鋅、氧化鋅/2奈米銀層、氧化鋅/5奈米銀層)送入水平式爐管中進行熱回火處理。接著,所有製備完成的六組樣品,再次利用電子束蒸鍍機蒸鍍上鎳/金指叉狀電極以形成蕭基接觸的金半金光檢測器,並測量光電特性。此外,也對所有樣品做物性與光性的分析。
    在尚未回火處理的元件中,未有奈米銀層的氧化鋅光檢測器拒斥比為94。而嵌入2nm銀界面層後拒斥比上升至113,但當銀界面層厚度增至5奈米後,拒斥比卻反而降至65,顯示為增加氧化鋅光檢測器的光檢測特性,嵌入之奈米銀層厚度是具有限制的。
    而經由回火處理後,純氧化鋅光檢測器拒斥比會由未回火前的94,驟降為4,失去了對光的選擇性。但拒斥比在嵌入2奈米與5奈米銀層經由回火處理後分別回復成73與29,顯示氧化鋅光檢測器在嵌入氧化銀顆粒後可以補償恢復回火後本身元件特性以及增強對於光的選擇性,而這些氧化銀奈米顆粒是經由插入之奈米銀層經由回火過程而相轉換形成。

    In the recent years, ZnO is one of the popular semiconductor materials and has been highly attended and researched. It has a large number of advantages, such as wide and large band gap (~3.37eV at room temperature) and large excitons binding energy (~60meV at room temperature). Besides, it has good performance in the thermal and chemical stability. So, it is suitable for applying in optoelectronics. But, in the semiconductor processes to fabricating the devices, the rise of temperature is unavoidable. And the thermal effect can seriously affect the characteristics of the semiconductors. Therefore, this thesis mainly focuses on the fabrication of ZnO-based metal-semiconductor-metal ultraviolet photodetectors, and the effects which were made by thermal process on the annealed photodetectors for simulating the temperature-rising situation in semiconductor process.
    At first, we deposited the ZnO active layers (the thickness was about 100nm) on quartz substrate by co-sputtering system. Besides, we took some of them out and inserted different thickness of Ag layer (the thickness were about 2nm and 5nm) between the substrates and ZnO active layers by electron beam evaporator. Then, the three samples (ZnO, ZnO/2nm Ag, ZnO/5nm Ag) were sent into the horizontal furnace for annealing process. Continuing, the six samples were sent into electron beam evaporator for depositing Ni/Au interdigital electrodes to form the Schottky contacts in metal-semiconductor-metal photoconductor, and measured the optoelectronic characteristics. Furthermore, we took physical and optical analysis, too.
    In the devices without annealing, the responsivity of ZnO photodetector without Ag nano-layer was 94. With 2nm Ag inter-layer, the responsivity was raised to 113. But, when the thickness of Ag inter-layer was increased to 5nm, the responsivity was decreased to 65. It was obvious that in order to increase the photo-detect characteristics of the ZnO photodetector, the thickness of the inserted Ag nano-layers was limited.
    After annealing process, the responsivity of ZnO photodetector without Ag nano-layer is decreased to 4 from 94 which was the non-annealed one, and it lost its selection of the incident light source. But the responsivities recovered to 73 and 29 for inserted 2nm and 5nm Ag nano-layers, respectively. It shows that the ZnO photodetectors with embedded Ag2O nanoparticles could compensate the devices characteristics after annealing and enhanced the selection of the incident light source, and these Ag2O nanoparticles were transferred from the embedded Ag nano-layres.

    Abstract (in Chinese) I Abstract (in English) III 誌謝 V Contents VII Table Captions IX Figure Captions X Chapter 1 Introduction 1 1-1 Background 1 1-2 Motivation 3 1-3 Organization of this thesis 4 Chapter 2 Relevant Theory and Experimental Apparatus 9 2-1 Theory of Metal-Semiconductor-Metal photodetectors 9 2-1-1 Metal-Semiconductor-Metal photodetectors 9 2-1-2 Current Transport Mechanism 10 2-2 Experiment Apparatus 11 2-2-1 Radio frequency (RF) sputter 11 2-2-2 Horizontal vacuum furnace 13 2-2-3 Electron-beam (E-beam) evaporator 14 2-2-4 X-ray Diffraction (XRD) system 14 2-2-5 Current-Voltage (I-V) measurement system 15 Chapter 3 Improvement of thermal-induced degradation in ZnO-based photodetector 24 3-1 Introduction 24 3-2 Experimental processes 25 3-3 Material investigation of ZnO and ZnO/Ag 27 3-4 I-V measurement and analysis of ZnO-based photodetectors 28 3-5 Summary 33 Chapter 4 Conclusions and Future Works 53 4-1 Conclusions 53 4-2 Future Works 54 4-2-1 The other ways to fabricate p-n junction with ZnO 54 4-2-2 Synthesis three-dimension (3D) nanostructure of ZnO 54 References 56

    [1]T. Nakamura, Y. Yamada, T. Kusumori & H. Minoura (2002), “Improvement in the crystallinity of ZnO thin films by introduction of a buffer layer,” Thin Solid Films, 411, pp. 60-64.
    [2]Y. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Zhu & T. Yao (1998), “Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization,”Journal of Applied Physics, 84, 3912.
    [3]See from the website : http://ncsr.csci-va.com/materials/zno.asp
    [4]D. W. Palmer, http://www.semiconductors.co.uk, 2002.06
    [5]J.L. Byeon and J.W. Kim (2010), “Fabrication of a pure, uniform electroless silver film using ultrafine silver aerosol particles,” Langmuir, 26, pp.11928-11933.
    [6]W. Wang, Q. Li, Y. Li, H. Xu and J.P. Zhai (2009), “Electroless Ag coating of fly ashcenospheres using polyaniline activator,” Journal of Physics D-Applied Physics, 42, 215306.
    [7]G.I.N. Waterhouse, G.A. Bowmaker and J.B. Metson (2001), “The thermaldecomposition of silver (I, III) oxide: A combined XRD, FT-IR and Raman spectroscopic study,” Physical Chemistry Chemical Physics, 3, pp.3838-3845.
    [8]T. Arai, C. Rockstuhl, P. Fons, K. Kurihara, T. Nakano, K. Awazu and J. Tominaga (2006), “Characteristics of nanostructured Ag films by the reduction of sputtered AgOx thin films,” Nanotechnology, 17, pp.79-82.
    [9]Y.G. Sun (2010), “Conversion of Ag nanowires to AgCl nanowires decorated with Au nanoparticles and their photocatalytic activity,” Journal of Physical Chemistry C, 114, pp.2127-2133.
    [10]U. Lee, S. Ham, C. Han, Y.J. Jeon, N. Myung and K. Rajeshwar (2010), “Mild and facile synthesis of Ag2S nanowire precursor using mercaptoacetic acid as a reductant/stabilizer and its subsequent conversion to Ag2S or CdS nanowires,” Materials Chemistry and Physics, 121, pp.549-554.
    [11]Z. Zhang, S.J. Wang, T. Yu and T. Wu (2007), “Controlling the growth mechanism of ZnO nanowires by selecting catalysts,” Journal of Physical Chemistry C, 111, pp.17500-17505.
    [12]C. Li, G.J. Fang, W.J. Guan and X.Z. Zhao (2007), “Multipod ZnO 3D microstructures,” Materials Letters, 61, pp.3310-3313.
    [13]J.F. Pierson and C. Rousselot (2005), “Stability of reactively sputtered silver oxide films,” Surface and Coatings Technology, 200, pp.276-279.
    [14]S.B. Rivers, G. Bemhardt, M.W. Wright, D.J. Frankel, M.M. Steeves and R.J. Lad (2007), “Structure, conductivity, and optical absorption of Ag2-xO films,” Thin Solid Films, 515, pp.8684-8688.
    [15]D. Volochova, V. Antal, P. Diko, M. Sefcikova, K. Zmorayova, J. Kovac, H.W. Weber & X. Chaud (2010), “Time dependent changes in Ag doped YBCO superconductors,” Acta Physica Polonica A, 118, pp.1047-1048.
    [16]O. Buchneva, I. Rossetti, C. Oliva, M. Scavini, S. Cappelli, B. Sironi, M. Allieta, A. Kryukov & L. Forni (2010), “Effective Ag doping and resistance to sulfur poisoning of La-Mn perovskites for the catalytic flameless combustion of methane,” Journal of Materials Chemistry, 20, pp.10021-10031.
    [17]L. Pan, X.Y. Qin, M. Liu & F. Liu (2010), “Effects of Ag doping on thermoelectric properties of Zn4Sb3 at low temperatures,” Journal of Alloys and Compounds, 489, pp.228-232.
    [18]U. Rambabu, N.R. Munirathnam & T.L. Prakash (2009), “Synthesis and characterization of Ag doped CaWO4 powder phosphors for optical blue emission,” Journal of Optoelectronics and Advanced Materials, 11, pp.1839-1842.
    [19]H.K. Yadav, K. Sreenivas & V. Gupta (2010), “Enhanced response from metal/ZnO bilayer ultraviolet photodetector,” Applied Physics Letters, 96, 223507.
    [20]M.A. Ghusoon, P. Chakrabarti (2010), “Effect of thermal treatment on the performance of ZnO based metal-insulator-semiconductor ultraviolet photodetectors,” Applied Physics Letters, 97, 031116.
    [21]C.J. Wei, H.J. Klein & H. Beneking (1981), “Symmetrical mott barrier as a fast photodetector,” Electronics Letters, 17, pp. 688-690.
    [22]M. Marso, M. Horstmann, M. Hardtdegen, P. Kordos & H. Luth (1997), “Electrical behavior of the InP/InGaAs based MSM 2DEG diode,” Solid-State Electronics, 41, pp. 25.
    [23]P. Bhattacharya (1997), Semiconductor optoelectronic devices, 2nd ed., Prentice Hall, New Jersey.
    [24]R.K. Watts, Vossen & W. Kern (1978), eds. Thin Film processes, Academic , New York, , pp131 -174.
    [25]C.Y. Chang & S.M. Sze, ULSI technology, pp380.
    [26]J.L. Vossen, J.J. Cuomo (1978), Thin Film Processes, Academic, New York, p24.
    [27]S.I. Shah, Handbook of Thin Film Process Technology P.A3.0.1
    [28]S.M. Sze, VLSI Technology, p387.
    [29]P. Ruterana, M. Albrecht & J. Neugebauer (2003), “Nitride Semiconductors : handbook on materials and devices”, Wiley-VCH.
    [30]B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaars & J. S. Speck (1996), “Role of threading dislocation structure on the x‐ray diffraction peak widths in epitaxial GaN films”, Applied Physics Letters, 68, 643.
    [31]M. G. Cheong, K. S. Kim, C. S. Oh, N. W. Namgung, G. M. Yang, C. H. Hong, K. Y. Lim, D. H. Lim & A. Yoshikawa (2000), “Conductive layer near the GaN/sapphire interface and its effect on electron transport in unintentionally doped n-type GaN epilayers”, Applied Physics Letters, 77, 2557.
    [32]Y. Fu, Y. T. Moon, F. Yun, U. Ozgur, J. Q. Xie, S. Dogan, H. Morkoc, C. K. Inoki, T. S. Kuan, L. Zhou & D. J. Smith (2005), “Effectiveness of TiN porous templates on the reduction of threading dislocations in GaN overgrowth by organometallic vapor-phase epitaxy”, Applied Physics Letters, 86, 043108.
    [33]A.A. Tseng (2005), “Recent developments in nanofabrication using focused ion beams,” Small, 1, pp.924-939.
    [34]M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo & P.D. Yang (2001), “Room-temperature ultraviolet nanowire nanolasers,” Science, 292, pp.1897-1899.
    [35]D.C. Kim, W.S. Han, B.H. Kong, H.K. Cho & C.H. Hong (2007), “Fabrication of the hybrid ZnO LED structure grown on p-type GaN by metal organic chemical vapor deposition,” Physica B-Condensed Matter, 401, pp.386-390.
    [36]J.Y. Lee, J.H. Lee, H.S. Kim, C.H. Lee, H.S. Ahn, H.K. Cho, Y.Y. Kim, B.H. Kong & H.S. Lee (2009), “A study on the origin of emission of the annealed n-ZnO/p-GaN heterostructure LED,” Thin Solid Films, 517, pp.5157-5160.
    [37]X.F Chu, T.Y. Chen, W.B. Zhang, B.Q. Zheng & H.F. Shui (2009), “Investigation on formaldehyde gas sensor with ZnO thick film prepared through microwave heating method,” Sensors and Actuators B-Chemical, 142, pp.49-54.
    [38]N. Tamaekong, C. Liewhiran, A. Wisitsoraat & S. Phanichphant (2009), “Sensing characteristics of flame-spray-made Pt/ZnO thick films as H2 gas sensor,” Sensors, 9, pp.6652-6669.
    [39]N.H. Al-Hardan, M.J. Abdullah, H. Ahmad, A.A. Aziz & L.Y. Low (2011), “Investigation on UV photodetector behavior of RF-sputtered ZnO by impedance spectroscopy,” Solid-State Electronics, 55, pp.59-63.
    [40]S.M. Peng, Y.K. Su, L.W. Ji, C.Z. Wu, W.B. Cheng & W.C. Chao (2010), “ZnO Nanobridge Array UV Photodetectors,” Journal of Physical Chemistry C, 114, pp.3204-3208.
    [41]C. Liu, B.P. Zhang, Z.W. Lu, N.T. Binh, K. Wakatsuki, Y. Segawa & R. Mu (2009), “Fabrication and characterization of ZnO film based UV photodetector,” Journal of Materials Science-Materials in Electronics, 20, pp.197-201.
    [42]S.J. Young, L.W. Ji, S.J. Chang, S.H. Liang, K.T. Lam, T.H. Fang, K.J. Chen, X.L. Du & Q.K. Xue (2007), “ZnO-based MIS photodetectors,” Sensors and Actuators a-Physical, 135, pp.529-533.
    [43]T.C. Zhang, Y. Guo, Z.X. Mei, C.Z. Gu & X.L. Du (2009), “Visible-blind ultraviolet photodetector based on double heterojunction of n-ZnO/insulator-MgO/p-Si,” Applied Physics Letters, 94, pp.113508.
    [44]S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu & H. Shen (2001), “ZnO Schottky ultraviolet photodetectors,” Journal of Crystal Growth, 225, pp.110-113.
    [45]S.J. Young, L.W. Ji, T.H. Fang, S.J. Chang, Y.K. Su & X.L. Du (2007), “ZnO ultraviolet photodiodes with Pd contact electrodes,” Acta Materialia, 55, pp.329-333.
    [46]K.J. Chen, F.Y. Hung, S.J. Chang & S.J. Young (2009), “Optoelectronic characteristics of UV photodetector based on ZnO nanopillar thin films prepared by Sol-Gel method,” Materials Transactions, 50, pp.922-925.
    [47]D.D. Lin, H. Wu, W. Zhang, H.P. Li & W. Pan (2009), “Enhanced UV photoresponse from heterostructured Ag-ZnO nanowires,” Applied Physics Letters, 94, 172103.
    [48]K.W. Liu, M. Sakurai, M.Y. Liao & M. Aono (2010), “Giant improvement of the performance of ZnO nanowire photodetectors by Au nanoparticles,” Journal of Physical Chemistry C, 114, pp.19835-19839.
    [49]H.K. Yadav, K. Sreenivas & V. Gupta (2010), “Persistent photoconductivity due to trapping of induced charges in Sn/ZnO thin film based UV photodetector,” Applied Physics Letters, 96, 223507.
    [50]Z.B. Fang, Z.J. Yan, Y.S. Tan, X.Q. Liu & Y.Y. Wang (2005), “Influence of post-annealing treatment on the structure properties of ZnO films,” Applied Surface Science, 241, pp.303–308
    [51]Y.X. Jin, Q.L. Chi, K. Wang, J.A. Hao, Q.S. Wang & J.A. Zhang (2011), “Investigation of photoluminescence in undoped and Ag-doped ZnO flowerlike nanocrystals,” Journal of Applied Physics, 109, 053521
    [52]H.A. Atwater & A. Polman (2010), “Plasmonics for improved photovoltaic devices,” Nature Materials, 9, pp.205-213.
    [53]Y. Ida, S. Watase, T. Shinagawa, M. Watanabe, M. Chigane, M. Inaba, A. Tasaka & M. Izaki (2008), “Direct electrodeposition of 1.46 eV bandgap Silver(I) oxide semiconductor films by electrogenerated acid,” Chemistry of Materials, 20, pp.1254-1256.
    [54]Z.S. Hu, F.Y. Hung, S.J. Chang, K.J. Chen & Y.Z. Chen (2010), “Crystallization effect of Al-Ag alloying layer in PL enhancement of ZnO thin film,” Intermetallics, 18, pp.1428-1431.
    [55]S.T. Kuo, W.H. Tuan, J. Shieh & S.F. Wang (2007), “Effect of Ag on the micro structure and electrical properties of ZnO,” Journal of the European Ceramic Society, 27, pp.4521-4527.
    [56]S. Cho, J.W. Jang, J.S. Lee & K.H. Lee (2010), “Exposed crystal face controlled synthesis of 3D ZnO superstructures,” Langmuir, 26, pp.14255-14262.
    [57]J.M. Li (2010), “Highly UV luminescent ZnO microtetrapod-on- nanowire hybrids,” Nanotechnology, 21, pp.175603.
    [58]W.W. Lu, S.Y. Gao & J.J. Wang (2008), “One-pot synthesis of Ag/ZnO self-assembled 3D hollow microspheres with enhanced photocatalytic performance,” Journal of Physical Chemistry C, 112, pp.16792-16800.
    [59]J. Shi, S. Grutzik & X.D. Wang (2009), “Zn cluster drifting effect for the formation of ZnO 3D nanoarchitecture,” Acs Nano, 3, pp.1594-1602.
    [60]S.R. Haldar, A. Nayak, T.K. Chini, S.K. Ray, N. Yamamoto & S. Bhunia (2010), “Vapor condensation growth and evolution mechanism of ZnO nanorod flower structures,” Physica Status Solidi a-Applications and Materials Science, 207, pp.364-369.

    下載圖示 校內:2017-02-08公開
    校外:2017-02-08公開
    QR CODE