| 研究生: |
蔡秉夆 Tsai, Ping-Feng |
|---|---|
| 論文名稱: |
氮化鋁燃燒合成及後續製程開發 Process Development for Combustion Synthesis and Subsequent Processing of Aluminum Nitride |
| 指導教授: |
鍾賢龍
Chung, Shyan-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 氮化鋁 、燃燒合成法 |
| 外文關鍵詞: | combustion synthesis, aluminum nitride |
| 相關次數: | 點閱:51 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗室研究以高溫自我蔓延燃燒合成法製備氮化鋁已有相當長的時間,此方法之可行性及難易度與鋁粉之型態密切相關,先前本實驗室使用之鋁粉主要為片狀鋁粉,片狀鋁粉之堆積密度較低、孔隙度高、鋁粉與氮氣之接觸面積大,燃燒合成反應易於進行,亦易於獲得高轉化率及量產技術,但是此種鋁粉價格高不利於工業生產,多數其他形狀之鋁粉,價格較低廉,但是大多堆積密度高、氮氣供應不易,不易進行燃燒合成反應,亦不易獲得高轉化率並建立量產技術,本研究別以開發使用低價位鋁粉燃燒合成氮化鋁之合成技術為目標,吾人選用不規則形鋁粉為燃燒合成製備氮化鋁之原料,僅需要添加少量添加劑,且反應時僅需在低壓力氣氛下即可反應,自原本之每批次150克級放大至15公斤級,吾人並探討製程方法與最佳操作條件以10kg級而言,在最佳操作條件下,經過顎碎後的氮化鋁粉體,產率約達99%其中灰粉轉化率98.82%;黃粉轉化率99.34%,本研究亦探討並建立將合成之塊狀產物,於顎碎至小於兩毫米級,經由簡易研磨(使用球磨架之研磨方式),而達到合乎市場需求(10μm左右)之乾式研磨技術。此球磨架乾式研磨技術,與先前本實驗室建立之濕式球磨技術比較,具有不須使用溶劑及烘乾粉體所需成本之優勢。
In our laboratory has studied the preparation of aluminum nitride by high-temperature self-propagating combustion synthesis for a long time. The feasibility and difficulty of this method are closely related to the type of aluminum powder. The aluminum powder used in our laboratory was mainly flakes. Flaky aluminum powder has low bulk density, high porosity and large contact area between aluminum powder and nitrogen so combustion synthesis reaction is easy to proceed, and it is easy to obtain high conversion and establish mass production technology, but the price of this aluminum powder high is not conducive to industrial production. Most other shapes of aluminum powder are cheaper, but most of them have high bulk density so nitrogen supply is not easy. It is not easy to carry out combustion synthesis reaction, and also not easy to obtain high conversion and establish mass production technology. The synthesis of aluminum nitride of using low-price aluminum powder is the goal. I chose irregular aluminum powder as the raw material for the preparation of aluminum nitride by combustion synthesis. Only a small amount of additives need to be added, and the reaction only needs to be under a low nitrogen pressure. The reactant is from the original 150 grams of each batch to 15 kilograms. I discuss the process and the best operating conditions. For the 10kg class, under the best operating conditions, the aluminum nitride after jaw crushing the yield of the powder is about 99%. The conversion of gray powder is 98.82%; the conversion of yellow powder is 99.34%. This study also explored and established a block product, which was crushed to less than two millimeters in the jaw by simple grinding ( Use the grinding method of tumbling mill), and achieve the dry grinding technology that meets the market demand (about 10μm). Compared with the wet ball mill technology established in our laboratory, the dry grinding technology of the ball mill has the advantage of not requiring the use of solvents and without the cost of drying powder.
1 汪建民. 陶瓷技術手冊Ceramic technology handbook. (1994).
2 吳朗. 電子陶瓷-入門. (1992).
3 Sander, H. K. in C&E News (1984).
4 Sheppard, L. M. Aluminum nitride : a versatile but challenging material. Am. Ceram. Soc. Bull. 69, 1801-1803 (1990).
5 Zakorzhevskii, V. V., Borovinskaya, I. P. & Sachkova, N. V. Combustion Synthesis of Aluminum Nitride. Inorganic Materials 38, 1131-1140, doi:10.1023/A:1020966500032 (2002).
6 Dean, J. A. LANGE'S HANDBOOK OF CHEMISTRY. Fifteenth Edition edn, 3.13 (McGRAW-HILL, INC).
7 周和平, 刘., 吴 音. 氮化铝陶瓷的研究与应用. 硅酸盐学报 (1998).
8 Elagin, A., Beketov, A., Baranov, M. & Shishkin, R. Aluminum nitride. Preparation methods. Refractories and industrial ceramics 53, 395-403 (2013).
9 Kuang, J., Zhang, C., Zhou, X. & Wang, S. Synthesis of high thermal conductivity nano-scale aluminum nitride by a new carbothermal reduction method from combustion precursor. Journal of crystal growth 256, 288-291 (2003).
10 Bradshaw, S. M. & Spicer, J. L. Combustion synthesis of aluminum nitride particles and whiskers. Journal of the American Ceramic Society 82, 2293-2300 (1999).
11 Chung, S.-L., Yu, W.-L. & Lin, C.-N. A self-propagating high-temperature synthesis method for synthesis of AlN powder. Journal of materials research 14, 1928-1933 (1999).
12 Dunmead, S. D., Moore, W. G., Howard, K. E. & Morse, K. C. (Google Patents, 1997).
13 Riedel, R. & Gaudl, K. U. Formation and characterization of amorphous aluminum nitride powder and transparent aluminum nitride film by chemical vapor deposition. Journal of the American Ceramic Society 74, 1331-1334 (1991).
14 Nickel, K. G., Riedel, R. & Petzow, G. Thermodynamic and experimental study of high‐purity aluminum nitride formation from aluminum chloride by chemical vapor deposition. Journal of the American Ceramic Society 72, 1804-1810 (1989).
15 Maya, L. Synthetic approaches to aluminum nitride via pyrolysis of a precursor. Adv. Ceram. Mater. 1, 150-153 (1986).
16 Dryburgh, P. M. (Google Patents, 1979).
17 Merzhanov, A. & Borovinskaya, I. Self-spreading high-temperature synthesis of refractory inorganic compounds. Doklady Akademii Nauk SSSR, Seriya Khimiya 204, 366-369 (1972).
18 Merzhanov, A. Combustion processes that synthesize materials. Journal of materials processing technology 56, 222-241 (1996).
19 Munir, Z. A. & Anselmi-Tamburini, U. Self-propagating exothermic reactions: the synthesis of high-temperature materials by combustion. Materials Science Reports 3, 279-365 (1989).
20 Subrahmanyam, J. & Vijayakumar, M. Self-propagating high-temperature synthesis. Journal of Materials Science 27, 6249-6273 (1992).
21 Khaikin, B. & Merzhanov, A. Theory of thermal propagation of a chemical reaction front. Combustion, Explosion and Shock Waves 2, 22-27 (1966).
22 Strunina, A., Martem'yanova, T., Barzykin, V. & Ermakov, V. Ignition of gasless systems by a combustion wave. Combustion, Explosion and Shock Waves 10, 449-455 (1974).
23 Novozhilov, B. in Dokl. Phys. Chem. 836-838.
24 王为民, 徐慢 & 梅炳初. 自蔓延高温合成法制备 TiN 陶瓷粉末, (1995).
25 张学军, 郑永挺, 韩杰才 & 周立娟. 稀释剂含量对自蔓延高温合成 Si_3N_4-SiC-TiN 陶瓷的影响, (2006).
26 江国健, 庄汉锐, 李文兰, 邬凤英 & 张宝林. 高压氮气中燃烧合成氮化铝的机理研究 (1). 材料科学与工程学报, 237-240 (2000).
27 Karpiński, J. & Porowski, S. High pressure thermodynamics of GaN. Journal of crystal growth 66, 11-20 (1984).
28 Lee, W.-C., Tu, C.-L., Weng, C.-Y. & Chung, S.-L. A novel process for combustion synthesis of AlN powder. Journal of materials research 10, 774-778 (1995).
29 Mukas' yan, A., Martynenko, V., Merzhanov, A., Borovinskaya, I. & Blinov, M. Y. Mechanism and principles of silicon combustion in nitrogen. Combustion, Explosion and Shock Waves 22, 534-540 (1986).
30 Munir, Z. A. & Holt, J. B. The combustion synthesis of refractory nitrides. Journal of materials science 22, 710-714 (1987).
31 Merzhano.Ag, Volodin, Y. E. & Borovins.Ip. Mechanism of Porous Metal Specimen-Combustion in Nitrogen. Dokl Akad Nauk Sssr+ 206, 905-& (1972).
32 Eslamloogrami, M. & Munir, Z. A. Effect of Nitrogen Pressure and Diluent Content on the Combustion Synthesis of Titanium Nitride. J Am Ceram Soc 73, 2222-2227 (1990).
33 Pityulin, A. N., Shcherbakov, V. A., Borovinskaya, I. P. & Merzhanov, A. G. Laws and Mechanism of Diffusional Surface Burning of Metals. Combust Explo Shock+ 15, 432-437 (1979).
34 Марков, Ю. М. & Латухин, Е. И. СВС НИТРИДА АЛЮМИНИЯ С ИСПОЛЬЗОВАНИЕМ АКТИВИРУЮЩИХ ДОБАВОК. Современные материалы, техника и технологии (2019).
35 Sheppard, L. M. Powders That" Explode" Into Materials. Adv. Mater. Process. 2, 25-32 (1986).
36 Holt, J. B. Exothermic process yields refractory nitride materials. Ind. Res. Dev. 25, 88 (1983).
37 Dunmead, S. D., Munir, Z. A. & Holt, J. B. Gas-solid reactions under a self-propagating combustion mode. Solid State Ionics 32, 474-481 (1989).
38 Costantino, M. & Firpo, C. High pressure combustion synthesis of aluminum nitride. Journal of materials research 6, 2397-2402 (1991).
39 Panjipour, R. & Barani, K. The effect of ball size distribution on power draw, charge motion and breakage mechanism of tumbling ball mill by discrete element method (DEM) simulation. Physicochemical Problems of Mineral Processing 54 (2018).
40 Davis, E. W. Ball mill crushing in closed circuit with screens. (University of Minnesota, 1925).
41 Joisel, A. & Birebent, A. Mécanique interne du broyeur à boulets. (Revue des matériaux de construction, 1952).
42 Beke, B. in The Process of Fine Grinding 74-83 (Springer Netherlands, 1981).
43 Soni, R. K. & Mishra, B. K. 1153-1168 (Springer Singapore).
44 林俊男. 燃燒合成氮化鋁之製程開發. 國立成功大學博士論文 (2001).
45 張智偉. 燃燒法合成氮化鋁粉體之新製程開發. 國立成功大學碩士論文 (2003).
46 Chen, I., Hwang, S. K. & Chen, S. Chemical kinetics and reaction mechanism of thermal decomposition of aluminum hydroxide and magnesium hydroxide at high temperature (973-1123 K). Industrial & engineering chemistry research 28, 738-742 (1989).
47 Fang, H. L. & DaCosta, H. F. in Proceeding of the 8th Annual Conference of the Engine-Efficiency and Emissions Research (DEER). 25-29.
48 Zakorzhevskii, V., Borovinskaya, I. & Sachkova, N. Combustion synthesis of aluminum nitride. Inorganic materials 38, 1131-1140 (2002).
49 Yasaputera, R. 使用球形鋁粉燃燒合成及量產氮化鋁製程開發. 國立成功大學碩士論文 (2019).
校內:2025-07-10公開