簡易檢索 / 詳目顯示

研究生: 林揚凱
Lin, Yang-Kai
論文名稱: 原子力顯微術於凝血酶調節素基因轉殖後細胞形態與表面機械性質的評估
Evaluation of Cell Morphology and Surface Mechanical Properties by AFM after Thrombomodulin Transfection
指導教授: 張志涵
Chang, Chih-Han
張憲彰
Chang, Hsien-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 58
中文關鍵詞: 凝血酶調節素、原子力顯微鏡、力位移曲線、有限元素法
外文關鍵詞: Atomic force microscope, finite element method, force-distance curve, thrombomodulin
相關次數: 點閱:96下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人類凝血酶調節素(thrombomodulin, TM) 是血管內皮細胞表面的一種醣蛋白(glycoprotein),其分布包括動脈、靜脈、微血管以及淋巴管,當TM與凝血酶(thrombin)形成複合體時,可改變thrombin的受質特異性,使thrombin由促凝特性轉變為抑制凝血的功能。且當兩者結合之後,thrombin可增加對protein C的活化作用,被活化的protein C可更進一步將血流內被活化的Va和VIIIa凝血因子分解,藉此達到抑制凝血的作用。原子力顯微鏡在不需要複雜樣本前處理下,顯影方面擁有奈米級的解析度,因此特別適合用於生物樣本上的量測,此外與一般顯微鏡不同的是,能夠對利用其中力-位移曲線(force-distance curve)的功能,量測樣本表面的機械性質。本實驗利用原子力顯微鏡來量測凝血酶調節素基因與其重組基因轉殖後,人類黑色素腫瘤細胞表面的機械性質變化,並且配合有限元素分析來探討在細胞不同厚度的區域量測上的誤差性。發現,在經由TMG基因轉殖後,細胞表面有ruffle的產生,且在ruffle的表面楊氏係數約為15.0±4.19 kPa,明顯比其他區域高。對只有轉殖螢光蛋白控制組細胞GFP來說,經TMG轉殖後的細胞整體來講表面楊氏係數較高。轉殖TMG(△C)的細胞,型態上呈現較為紡錘形態,且在周圍邊緣的楊氏係數分布上,於離細胞核較遠的兩端點區域較高,靠近細胞核兩邊的區域較低。使用的量測原理Sneddon model,在有限元素模擬中發現實驗誤差會隨著細胞絕對厚度的下降而上升。

    Human thrombomodulin(TM) is a kind of glycoprotein distributed on endothelial cell of blood vessel including artery, vein, capillary and lymph. By forming complex with thrombin, TM alters the procoagulant activity of thrombin and acts as a cofactor in thrombin-catalyzed activation of protein C. Activated protein C can proteolytically inactive coagulation factor Va and VIIIa which in turn shutdown the generation of thrombin. Atomic force microscope (AFM) has high resolution in imaging, easy sample preparation so it’s suitable for imaging biological sample under liquid. Besides, it differs from other optical microscopy is that it could be used to measure mechanical properties of sample surface by using force-distance curve. In this study, the AFM is employed to measure the differences of surface elasticity of living human melanoma cell after TM and it recombinant gene transfection under liquid. Finally, finite element analysis is used to analyze the error in the measurement of different region thickness of cell. We found that after TMG transfection, there is significant ruffle formation on the leading edge and has relatively high Young’s modulus than other region, 15.0±4.19 kPa. As refer to GFP transfection, TMG has higher Young’s modulus then GFP ones and TMG (ΔC) exhibits a spindle-like shape. Furthermore, the Young’s modulus around cell edge represents a higher value at the opposite site far from nucleus and lower one near nucleus. The error occurred as using the principle in this study would be increased as the thickness decreased by finite element simulation.

    目次 摘 要 I Abstract II 目次 III 表目錄 V 圖目錄 VI 第1章 緒論 1 1.1 研究背景 1 1.1.1 人類凝血酶調節素 1 1.1.2 人類凝血酶調節素的結構和功能 2 1.2 研究動機 4 1.3 原子力顯微鏡發展簡史 7 1.4 原子力顯微鏡呈像原理 7 1.5 原子力顯微鏡硬體架構 10 1.5.1 感測元件 11 1.5.2 回饋系統 13 1.5.3 掃瞄系統 13 1.6 力學定量分析 14 1.6.1 力-距離曲線 14 1.6.2 力曲線容積呈像法 16 1.7 AFM於生物樣本的應用 16 1.7.1 活體細胞觀測及表面彈性分析 16 1.7.2 活體細胞受機械刺激後應變場分析 19 1.8 實驗架構 21 第2章 實驗設備與材料方法 22 2.1 儀器 22 2.2 細胞培養 25 2.3 實驗方法 26 2.4 對細胞掃描前所預備設之力的估算 26 2.5 資料分析 27 第3章 結果與討論 29 3.1 活體細胞表面彈性分析 29 3.2 討論 40 3.2.1 表面彈性分析 40 3.2.2 基材效應 43 3.3 有限元素法 44 3.3.1 有限元素法 44 3.3.2 實體模型建立 46 第4章 結論及未來展望 53 4.1 結論 53 4.2 未來展望 53 參考文獻 55 自述 58 表目錄 表1-1 細胞骨架類別 4 表1-2 骨母細胞培養於各基材上特性比較 17 表3-1 圖3-2細胞表面高度與楊氏係數統整表 30 表3-2 圖3-4細胞表面高度與楊氏係數統整表 32 表3-3 圖3-7細胞表面高度與楊氏係數統整表 35 表3-4 圖3-10細胞表面高度與楊氏係數統整表 37 表3-5 兩組資料統計分析 42 圖目錄 圖1-1 凝血酶調節素 3 圖1-2 細胞骨架示意圖(a)微管(b)微絲(c)中間絲 5 圖1-3 共軛焦顯微鏡影像(a)TM(b)actin filament。發現TM與actin filament有co-localiazation的現象。 5 圖1-4 (a)hight(b)DFL(c)3D image均由福馬林固定後TMG轉殖後細胞,可觀察到在細胞邊緣(圈選處)有ruffle產生(d)活體TMG轉殖後細胞,邊緣處(圈選處)也有ruffle產生。 6 圖1-5 原子與原子間的交互作用力因其間距離改變而有所不同。 8 圖1-6 原子力顯微鏡操作模式示意圖。 9 圖1-7 原子力顯微鏡硬體架構圖。 10 圖1-8 懸臂桿幾何外型(a)桿針(b)三角針。 12 圖1-9 針尖外型對掃描影像的影響(SEM image from NTMDT Corp.) 12 圖1-10 壓電晶體掃描器特性與構造。 14 圖1-11 force vs. distance curve。 15 圖1-13 force volume mode用於活體骨母細胞量測例 18 圖1-14 活體骨母細胞於PS培養皿(a)height(b)DFL, CoCr基材(c)height(d)DFL[30] 18 圖1-15 利用Fluo3-AM染色後共軛焦顯微鏡影像,箭頭標示探針刺激的細胞(a)刺激前(b)刺激後[34]。 19 圖1-16 E=10, kPa, ν=0.3, R=15 μm(a)徑向應變分佈,最大值發生於細胞表面,最大應變梯度發生在球體與細胞表面接觸與非接觸之間,(b)正切應變分佈,最大值發生於凹陷面,(c)垂直應變分佈,最大值發生於凹陷面,(d)型變圖,變形量於Z方向乘15倍[34]。 20 圖1-17 (a)Poisson ratio對應變的影響,其中E=10 kPa, R=15 μm, t=4 μm, F=1 nN(b)厚度對應變的影響,其中E=10 kPa, R=15 μm, F=1 nN, ν=0.4 [34]。 21 圖1-18 實驗架構圖。 21 圖2-1 探針示意圖。 24 圖2-2 Solver BIO-M。 24 圖3-1 Image of living GFP-1。 29 圖3-2 圖3-1的細胞等高線圖分佈,圖中實心點為探針量測處,單位為kPa。 30 圖3-3 Image of living GFP-2。 31 圖3-4 圖3-3的細胞表面等高線圖,圖中實心點為探針量測處,單位為kPa。 32 圖3-5 Image of living TMG-1。 33 圖3-6 (a)圖中箭頭線,箭頭處代表終點,另一端代表起點,於線上做20點stiffness量測與剖面高度作分析(b)藍色線代表stiffness,綠色代表剖面圖。可發現在圈選處,隨著高度上升,stiffness也有上升趨勢。 34 圖3-7 圖3-5的細胞等高線分佈圖,圖中實心點為探針量測細胞處,單位為kPa。 34 圖3-8 表3-3細胞表面高度與楊氏係數統整圖。 35 圖3-9 Image of living TMG-2。 36 圖3-10 圖3-9的細胞等高線分佈圖,圖中實心點及方格交叉點為探針量測處。 37 圖3-11 表3-4細胞表面高度與楊氏係數統整圖。 37 圖3-12 Image of living TMG (ΔC)。 38 圖3-13 圖A中,在細胞表面四周分別拉六條線段並於其上做10點量測,比較是否與細胞型態有關連,於圖H中,箭頭處代表較高stiffness所在處,將整體細胞建構成類似紡垂狀(spindle-like)。 39 圖3-14 force curve on relative hard sample。 40 圖3-15 first order derivate。 40 圖3-16 force curve on soft sample。 41 圖3-17 first order derivative。 41 圖3-18 擬合force curve示意圖。 42 圖3-19 活體MDCK AFM影像(a) height (b)細胞邊緣剖面圖(c)細胞核剖面圖。 43 圖3-20 有基材效應時,force curve容易有兩段明顯的斜率產生,後面那段研判由於壓到硬的基材所導致有較小的斜率。 44 圖3-21 有限元素原理示意圖。 45 圖3-22 實體模型、網格建立 46 圖3-23 Z-component of displacement。 47 圖3-24 Z-component of strain。 47 圖3-25 von Mises strain。 48 圖3-26 Total force in x direction: 4.30×10-29 N。 48 圖3-27 Total force in y direction: -2.23×10-29 N。 49 圖3-28 Thickness 15 nm, total force in z direction: 3589×10-16 N。 49 圖3-29 Thickness 17 nm,total force in z direction: 2869.6×10-16 N。 50 圖3-30 Thickness 20 nm, total force in z direction: 2262.1×10-16 N。 50 圖3-31 Thickness 100 nm, total force in z direction: 2249.4×10-16 N。 51 圖3-32 Thickness 500 nm, total force in z direction: 1278.4×10-16 N。 51 圖3-33 厚度與total contact force關係圖。 52 圖3-34 厚度與誤差關係圖。 52 圖4-1 (a)AFM活體細胞影像(b)轉換後的細胞實體模型 54

    [1] Maruyama I. and Majerus P. W., The turnover of thrombin thrombomodulin complex in cultured human umbilical vein endothelial cells and A549 lung cancer cells. Endocytosis and degradation of thrombin, Journal of Biological Chemistry, 260, 15432-15438, 1985.
    [2] Wong V. L., Hofman F. M., Ishii H., and Fisher M., Regional distribution of thrombomodulin in human brain, Brain Research, 556, 1-5, 1991.
    [3] Ishii H. and Majerus P. W., Thrombomodulin is present in human plasma and urine, Journal of Clinical Investigation, 76, 2178-2181, 1985.
    [4] Esmon C. T., The regulation of natural anticoagulant pathways, Science, 235, 1348-1352, 1987.
    [5] Esmon C. T., Thrombomodulin as a model of molecular mechanisms that modulate protease specificity and function at the vessel surface, FASEB Journal, 9, 946-955, 1995.
    [6] Wen D. Z., Dittman W. A., Ye R. D., Deaven L. L., Majerus P. W., and Sadler J. E., Human thrombomodulin: complete cDNA sequence and chromosome localization of the gene, Biochemistry, 26, 4350-4357, 1987.
    [7] Shirai T., Shiojiri S., Ito H., Yamamoto S., Kusumoto H., Deyashiki Y., Maruyama I., and Suzuki K., Gene structure of human thrombomodulin, a cofactor for thrombin-catalyzed activation of protein C. Journal of Biochemistry, 103, 281-285, 1988.
    [8] Esmon C. T., Esmon N. L., and Harris K. W., Complex formation between thrombin and thrombomodulin inhibits both thrombin-catalyzed fibrin formation and factor V activation, Journal of Biological Chemistry, 257, 7944-7947, 1982.
    [9] Esmon N. L., Carroll R. C., and Esmon C. T., Thrombomodulin blocks the ability of thrombin to activate platelets, Journal of Biological Chemistry, 258, 12238-12242, 1983.
    [10] Salem H. H., Maruyama I., Ishii H., and Majerus P. W., Isolation and characterization of thrombomodulin from human placenta, Journal of Biological Chemistry, 259, 12246-12251, 1984.
    [11] Jackman R. W., Beeler D. L., VanDeWater L., and Rosenberg R. D., Characterization of a thrombomodulin cDNA reveals structural similarity to the low density lipoprotein receptor, Proceedings of the National Academy of Sciences of the United States of America, 83, 8834-8838, 1986.
    [12] Patthy L., Detecting distant homologies of mosaic proteins. Analysis of the sequences of thrombomodulin, thrombospondin complement components C9, C8 alpha and C8 beta, vitronectin and plasma cell membrane glycoprotein PC-1. Journal of Molecular Biology, 202, 689-696, 1988.
    [13] Lu R. L., Esmon N. L., Esmon C. T., and Johnson A. E., The active site of the thrombin-thrombomodulin complex. A fluorescence energy transfer measurement of its distance above the membrane surface. Journal of Biological Chemistry, 264, 12956-12962, 1989.
    [14] Edward M., Conway E. M., Pollefeyt S., Collen D., and Steiner-Mosonyi M., The amino terminal lectin-like domain of thrombomodulin is required for constitutive endocytosis, Blood, 89, 652-661, 1997.
    [15] Kurosawa S., Galvin J. B., Esmon N. L., and Esmon C. T., Proteolytic formation and properties of functional domains of thrombomodulin, Journal of Biological Chemistry, 262, 2206-2212, 1987.
    [16] Zushi M., Gomi K., Yamamoto S., Maruyama I., Hayashi T., and Suzuki K., The last three consecutive epidermal growth factor-like structures of human thrombomodulin comprise the minimum functional domain for protein C-activating cofactor activity and anticoagulant activity, Journal of Biological Chemistry, 264, 10351-10353, 1989.
    [17] Honda G., Masaki C., Zushi M., Tsuruta K., and Sata M., The roles played by the D2 and D3 domains of recombinant human thrombomodulin in its function, Journal of Biochemistry, 118, 1030-1036, 1995.
    [18] Dittman W. A. and Majerus P. W., Structure and function of thrombomodulin: a natural anticoagulant, Blood, 75, 329-336, 1990.
    [19] Dittman W. A., Kumada T., Sadler J. E., and Majerus P. W.. The structure and function of mouse thrombomodulin. Phorbol myristate acetate stimulates degradation and synthesis of thrombomodulin without affecting mRNA levels in hemangioma cells, Journal of Biological Chemistry, 263, 15815-15822, 1988.
    [20] Alberts, Johnson, Lewis, Raff, Roberts, and Walter, Molecular Biology of the Cell, 3rd Ed., GARLAND, 796-834, 2003.

    [21] Park Scientific Instruments Corp., Users Guide to Autoprobe CP, Part II, http://www.park.com.
    [22] NT-MDT Corp., SPM introduction, http://www.ntmdt.ru.
    [23] Digital Instruments Corp., Data Sheets, http://www.di.com.
    [24] Piner R. D., Hong S., and Mirkin C. A., A new tool for studying the in-situ growth processes for self-assembled monolayers under ambient conditions, Langmuir, 15, 5457-5460, 1999.
    [25] Zammaretti P., Fakler A., Zaugg F., and Spichiger-Keller U. E., Atomic force microscope: a tool for studying ionophores, Analytical Chemistry, 72, 3689-3695, 2000.
    [26] Park Scientific Instruments Corp., A Practical Guide to Scanning Probe Microscopy.
    [27] Sneddon, I. N., The relation between load and penatration in the cxisymmetric boussinesq problem for a punch of arbitrary profile, J. Engng. Sci., 3, 47-57, 1965.
    [28] Hertz H., Über die Berührung fester elastischer Körper, J. Reine Angew. Mathematik, 92, 156-171, 1882.
    [29]http://www.di.com/movies/movies_inhance/appnotes/forcevol/fvmain.html
    [30] Jan D. and Silke D.¨h., Substrate dependent differences in morphology and elasticity of living osteoblasts investigated by atomic force microscopy, Colloids and Surfaces B: Biointerfaces, 19, 367–379, 2000.
    [31] Sinha R. K., Morris F., and Shah S. A., Surface composition of orthopaedic implant metals regulates cell attachment, spreading, and cytoskeletal organization of primary human osteoblasts in vitro, Clinical orthopaedics and related research, 305, 258-272, 1994.
    [32] Jorgensen N. R., Geist S. T., Civitelli R., and Steinberg T. H., ATP- and Gap junction-dependent intercellular calcium signaling in osteoblastic cells, The Journal of Cell Biology, 139, 497-506, 1997.
    [33] Glogauer M., Ferrier J., and McCulloch C. A., Magnetic fields applied to collagen-coated ferric oxide beads induce stretch-activated Ca2+ flux in fibroblasts, American Journal of Physiology Cell Physiology, 269, 1093-1104, 1995.
    [34] Charras G. T., Lehenkari P. P., Horton M. A., Atomic force microscopy can be used to mechanically stimulate osteoblasts and evaluate cellular strain distributions, Ultramicroscopy, 86, 85-95, 2001.
    [35] Shao Z., Mou J., Czajkowsky D. M., Yang J., and Yuan J.-Y., Biological atomic force microscopy: what is achieved and what is needed. Advances in Physics, 45, 1-86, 1996.
    [36] Le Grimellec C., Lesniewska E., Giocondi M.-C., Finot E., Vie V., and Goudonnet T.-P., Imaging of the surface of living cells by low-force contact-mode atomic force microscopy, Biophysical Journal, 76, 1101-1111, 1998.
    [37] Domke J., Radmacher M., Measuring the Elastic Properties of Thin Polymer Films with the Atomic Force Microscope, Langmuir, 14, 3320-3325, 1998.
    [38] Anja V. and Giorgio S., Measuring elasticity of biological materials by atomic force microscopy FEBS Letters, 430, 12-16, 1998.

    下載圖示 校內:2008-08-29公開
    校外:2011-08-29公開
    QR CODE