簡易檢索 / 詳目顯示

研究生: 黃建銓
Huang, Chien-Chuan
論文名稱: 適用於影像處理之VLSI架構實現
The Realization of VLSI Architectures for Image Processing
指導教授: 陳培殷
Chen, Pei-Yin
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 149
中文關鍵詞: 影像處理桶狀扭曲去雜訊影像縮放硬體實作
外文關鍵詞: VLSI architecture, barrel distortion, denoising, scaling, image processing
相關次數: 點閱:114下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著電腦視覺與網路通訊的蓬勃發展,各式各樣的多媒體應用愈趨普及,網路傳輸的使用也愈趨頻繁。多媒體應用包含了語音、影像、圖片等等,本論文研究方向主要針對影像部分。在影像取得或是傳送的過程,影像常常容易受到雜訊的干擾,雜訊會造成影像模糊或不易辨識,進而加深電腦視覺應用上處理的困難。一般來說,我們可以根據雜訊的分布情形,將雜訊分成為兩類,一是 fixed-valued impulse (固定脈衝),二是 random-valued impulse (隨機脈衝),固定脈衝又被稱為salt-and-pepper noise (胡椒鹽雜訊),過去已有許多相關研究被提出來,可以有效的移除固定大小脈衝雜訊,然而對於隨機脈衝雜訊,因為雜訊的分布不似固定脈衝雜訊單純,在處理上將大大加深其困難度,本論文將針對隨機脈衝來作探討。除了雜訊影響,隨著多媒體應用的繁榮,手持裝置、各式不同影像解析度之顯示器的普及,另一重要的議題即是影像縮放技術,影像縮放技術目前已經廣泛的使用在許多應用中,如:液晶電視,高畫質數位電視,醫學影像等等。當顯示的影像解析度不同於目的設備所設定的解析度大小時,就需要使用到影像縮放技術。此外,因為電腦視覺的發展,廣角鏡頭應用於監視和醫學上也愈趨普及,廣角鏡鏡頭的視角較寬,可以包容的景物場面較大,因此在表現空間環境方面具有較強的優勢。然而,利用廣角鏡頭所取得的影像資料,通常會受到桶狀扭曲效應的影響。桶狀扭曲是一種放射狀對稱於鏡頭中心點的現象,影像外圍的區域因較高的壓縮率而產生扭曲的畫面。本論文除了針對隨機脈衝處理、影像縮放技術作探討,亦會對桶狀扭曲影像修正來作研究。
    對於許多即時處理的嵌入式多媒體應用產品來說,低複雜度、高效能之影像處理電路是不可或缺的;然而對消費者來說,在選擇消費性電子產品時,價格往往是最重要的考量,因此如何降低硬體成本,進而降低價格就成了非常重要的一個議題。本論文會針對此方向進行探討,研發低成本且適合以VLSI硬體實作的桶狀扭曲修正、去雜訊、影像縮放技術。
    首先針對桶狀扭曲修正技術,傳統的作法是利用座標轉換器(CORDIC)的硬體來計算出距離與夾角,但這樣的方式需要大量的運算時間和極高的硬體成本,在此我們提出一個低成本的桶狀扭曲影像修正電路VLSI架構,藉由利用放射狀扭曲的特性和長度比例的相關聯性,來達成有效率的硬體實現。在影像去雜訊技術方面,我們提出了一個有效率的隨機脈衝雜訊移除演算法(DTBDM)及其硬體實作,此演算法包含決策樹雜訊偵測器和邊緣特性保留濾波器。有別於隨機脈衝雜訊處理的相關研究通常需要依靠遞迴運算來達到較好的重建影像品質,此方法僅需對整張影像處理一次即可得到不錯的重建影像,大大減少了其運算時間;除了計算複雜度較低之外,此演算法僅需兩列影像大小寬度的記憶體緩衝區,因此所需之硬體成本也低。實驗結果顯示提出的方法不論在主客觀數據上都比現行的方法來的好。在影像縮放技術方面,我們提出了一個創新的影像縮放演算法以及其硬體實作。根據訊號插補誤差理論,提出之縮放演算法使用雙錯誤補償來使得插補值更為精準,並利用邊緣強化機制來加強影像邊緣的特性。硬體實作方面,我們採用了運算相依和硬體共用技術,更大幅降低其硬體電路成本。實驗結果顯示,和傳統一些較複雜高品質影像縮放演算法相比,此演算法僅需要較低的硬體成本,但在影像品質及數據比較上,都比傳統較複雜高品質影像縮放的方法有更好的表現。
    此論文提出之硬體架構之實現皆是使用Verilog硬體描述語言,並利用SYNOPSYS的Design Vision和TSMC的標準元件庫進行電路合成。根據合成結果,所提出的設計在硬體成本與速度上皆有極佳的競爭力。

    The fundamental characteristics of multimedia system are that they incorporate continuous media such as voice, video, and images. This study only concentrates on dealing with images. Images are often corrupted by impulse noise during image acquisition and transmission. The noise may seriously affect the performance of image processing techniques. According to the distribution of noisy pixel values, impulse noise can be classified into two categories: fixed-valued impulse noise and random-valued impulse noise. The former is also known as salt-and-pepper noise. There have been many methods for removing salt-and-pepper noise, and some of them perform very well. The random-valued impulse noise is more difficult to handle due to the random distribution of noisy pixel values. Here we just focus on removing the random-valued impulse noise from the corrupted image. In addition to the noise interferences, another important issue in multimedia application is image scaling technique. Image scaling is widely used in many fields, ranging from consumer electronics to medical imaging. This technique becomes indispensable when the resolution of an image differs from the screen resolution of a target display. Besides, due to the prosperity of computer vision, wide-angle cameras are also used in surveillance and medical imaging applications nowadays. Cameras with wide-angle lens can provide more information in a single image. However, images captured by wide-angle lens suffer from barrel distortion which means that the outer regions of the image are compressed more than the inner one. Hence, the barrel distortion correction technique becomes important.
    For many practical real-time embedded applications, the VLSI implementations of low-complexity and high-performance image processing circuit are necessary and should be considered. For customers, low cost is a very important consideration in purchasing consumer electronic products. To achieve the goal of low cost, less memory and easier computations are indispensable. In this dissertation, we are going to develop the lower-complexity techniques, which are simple and suitable for low-cost VLSI implementation, for barrel distortion correction, image denoising, and image scaling.
    On the barrel distortion correction topics, we present a low-cost high-speed VLSI architecture for barrel distortion correction. By eliminating the calculation of angle and adopting the odd-order back-mapping polynomial, the proposed high-performance distortion correction design can be implemented with very low cost. On the denoising topic, we propose an efficient denoising scheme and its VLSI architecture for the removal of random-valued impulse noise. A decision-tree-based impulse noise detector is employed to detect the noisy pixels, and an edge-preserving filter is used to reconstruct the intensity values of noisy pixels. Without doing iterations, the proposed method can reduce the execution time greatly. Besides, the design only requires low computational complexity and two line memory buffers. Its hardware cost is quite low. Our extensive experimental results demonstrate that the proposed technique can obtain better performances in terms of both quantitative evaluation and visual quality than the previous lower-complexity methods. Moreover, the performance can be comparable to the higher-complexity methods. On the scaling topic, we propose a novel scaling algorithm for the implementation of two-dimensional (2-D) image scalar. A bilateral error-amender is used to make the interpolation more precise, and an edge-weighted scheme enhances the edge features of the scaled images. This study also presents an efficient VLSI architecture for the proposed scaling method. The co-operation and hardware sharing techniques greatly reduce hardware cost requirements. Extensive experimental results demonstrate that the proposed method can obtain better performance than previous methods in both quantitative evaluation and visual quality.
    The VLSI architectures of the proposed design were implemented by using verilog HDL. We use SYNOPSYS Design Vision to synthesize the designs with TSMC cell library. Synthesis results demonstrate that our designs have the advantage of low cost and high performance.

    CHAPTER 1 INTRODUCTION 1 1.1 BACKGROUND 1 1.2 MOTIVATION 4 1.3 ORGANIZATION 8 CHAPTER 2 IMAGE PROCESSING TECHNIQUES 9 2.1 INTRODUCTION 9 2.2 IMAGE ACQUISITION 10 2.2.1 Wide-angle Lens 11 2.2.2 Infrared Lens 12 2.3 TRANSMISSION 14 2.3.1 Noise Interference 14 2.3.2 Data Loss 15 2.3.3 Data Compression 15 2.4 APPLICATIONS 16 2.4.1 Image Scaling 16 2.4.2 License-plate Recognition 17 2.4.3 Human Detection 18 2.4.4 Face Recognition 19 2.4.5 Image De-fogging & Enhancement 20 2.5 CONCLUDING REMARKS 21 CHAPTER 3 A LOW-COST VLSI IMPLEMENTATION OF BARREL DISTORTION CORRECTION FOR WIDE-ANGLE CAMERA IMAGES 22 3.1 INTRODUCTION 22 3.2 BARREL DISTORTION CORRECTION TECHNIQUES 23 3.3 THE PROPOSED VLSI ARCHITECTURE 26 3.3.1 Mapping Unit 32 3.3.2 Linear Interpolation Unit 33 3.4 VLSI IMPLEMENTATION AND COMPARISONS 34 3.5 CONCLUDING REMARKS 35 CHAPTER 4 A LOW-COST VLSI IMPLEMENTATION FOR EFFICIENT REMOVAL OF IMPULSE NOISE IN IMAGES 37 4.1 INTRODUCTION 37 4.2 RELATED WORK 39 4.2.1 Noise Types 39 4.2.2 Impulse Denoising Methods 40 4.3 THE PROPOSED DTBDM 45 4.3.1 Decision-Tree-Based Impulse Detector 47 4.3.2 Edge-Preserving Image Filter 53 4.4 VLSI IMPLEMENTATION 57 4.4.1 Adaptive Technology 58 4.4.2 Line Buffer (Ping-Pong Buffer) 59 4.4.3 Register Bank 59 4.4.4 Decision-Tree-Based Impulse Detector 61 4.4.5 Edge-Preserving Image Filter 66 4.4.6 Controller 68 4.5 EXPERIMENTAL RESULTS AND COMPARISONS 69 4.6 CONCLUDING REMARKS 81 CHAPTER 5 A LOW-COST VLSI IMPLEMEMTATION OF TWO-DIMENSIONAL IMAGE SCALAR FOR REAL-TIME MULTIMEDIA APPLICATIONS 82 5.1 INTRODUCTION 82 5.2 RELATED WORK 83 5.2.1 Nearest Neighbor (NN) 84 5.2.2 Bilinear (BL) 85 5.2.3 Bicubic (BC) 87 5.2.4 Winscale (Win) 88 5.2.5 Error-Amended Sharp Edge (EASE) 92 5.2.6 New Orientation-Adaptive Interpolation (NOAI) 94 5.3 INTERPOLATION ERROR 95 5.3.1 Interpolation Error Theorem 95 5.3.2 Linear Interpolation Error 96 5.4 THE PROPOSED INTERPOLATION METHOD 97 5.5 VLSI IMPLEMENTATION 105 5.5.1 Coordinate Accumulator (CA) 109 5.5.2 Line Buffers (LB) 109 5.5.3 Reorder Module (RM) 109 5.5.4 Weight Generator (WG) 110 5.5.5 Vertical Interpolator (VI) 112 5.5.6 Horizontal Interpolator (HI) 113 5.5.7 Controller 115 5.6 EXPERIMENTAL RESULTS AND COMPARISONS 115 5.7 CONCLUDING REMARKS 135 CHAPTER 6 CONCLUSIONS AND FUTURE WORK 136 6.1 CONCLUSIONS 136 6.2 FUTURE WORK 137 REFERENCES 139 PUBLICATION LISTS 147

    [1] R. C. Gonzalez and R. E. Woods, Digital Image Processing. Pearson Education, Upper Saddle River, New Jersey, 2007.
    [2] W. K. Pratt, Digital Image Processing. New York: Wiley-Interscience, 1991.
    [3] T. M. Lehmann, C. Gonner, and K. Spitzer, “Survey: Interpolation methods in medical image processing,” IEEE Trans. Med. Imag., vol. 18, no. 11, pp. 1049-1075, Nov. 1999.
    [4] C.Weerasnghe, M. Nilsson, S. Lichman, and I. Kharitonenko, “Digital zoom camera with image sharpening and suppression,” IEEE Trans. Consumer Electron., vol. 50, no. 3, pp. 777-786, Aug. 2004.
    [5] C.-Y. Lien, C.-P. Young, and P.-Y. Chen, “A Hybrid Image Restoring Algorithm for Interlaced Video,” IEEE Signal Processing Letter, vol. 16, no. 3, pp. 223-226, Mar. 2009.
    [6] J. Weng, P. Cohen, and M. Herniou, “Camera calibration with distortion models and accuracy evaluation,” IEEE Trans.Pattern Anal. Mach. Intell., vol. 14, no. 10, pp. 965-980, Oct. 1992.
    [7] Y. Nomura, M. Sagara, H. Naruse, and A. Ide, “Simple calibration algorithm for high-distortion-lens camera,” IEEE Trans.Pattern Anal. Mach. Intell., vol. 14, no. 12, pp. 1095-1099, Nov. 1992.
    [8] V. K. Asari, S. Kumar, and D. Radhakrishnan, “A new approach for nonlinear distortion correction in endoscopic images based on least squares estimation,” IEEE Trans. Medical Imaging, vol. 18, no. 4, pp. 345-354, Apr. 1999.
    [9] R. Swaminathan and S. K. Nayar, “Nonmetric calibration of wide-angle lenses and polycameras,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 10, pp. 1172-1178, Oct. 2000.
    [10] J. P. Helferty, C. Zhang, G. McLennan, and W. E. Higgins, “Videoendoscopic distortion correction and its applications to virtual guidance of endoscopy,” IEEE Trans. Medical Imaging, vol. 20, no. 7, pp. 605-617, Jul. 2001.
    [11] S. Thirthala and M. Pollefeys, “The radial trifocal tensor: a tool for calibrating the radial distortion of wide-angle cameras,” in Proc. CVPR’05, 2005, pp. 321-328.
    [12] M. T. El-Melegy and A. A. Farag, “Nonmetric lens distortion calibration: closed-form solutions, robust estimation and model selection,” in Proc. IEEE ICCV2003, vol. 2, 2003. pp. 1554-1559
    [13] M. Marder, “Comparison of calibration algorithms for a low-resolution, wide angle, 3D camera,” Master of Science Thesis, Stockholm, Sweden, 2005.
    [14] J. Kannala and S. S. Brandt, “A generic camera model and calibration method for conventional, wide-angle, and fish-eye lenses,” IEEE Trans.Pattern Anal. Mach. Intell., vol. 28, no. 8, pp. 1335-1340, Aug. 2006.
    [15] V. K. Asari, “Design of an efficient VLSI architecture for non-linear spatial warping of wide-angle camera image,” Journal of System Architecture, vol. 50, pp. 743-755, Aug. 2004.
    [16] H. T. Ngo and V. K. Asari, “A pipelined architecture for real-time correction of barrel distortion in wide-angle camera images,” IEEE Trans. Circuits and System for Video Technol., vol. 15, no. 3, pp. 436-444, March 2005.
    [17] 黃建銓,「桶狀扭曲影像修正電路之設計與實現」,國立成功大學資訊工程學系,碩士論文,96 學年度。
    [18] H. Hwang and R. A. Haddad, “Adaptive median filters: new algorithms and results,” IEEE Trans. Image Process., vol. 4, no. 4, pp. 499–502, Apr. 1995.
    [19] S. Zhang and M.A. Karim, “A new impulse detector for switching median filter,” IEEE Signal Process. Lett., vol. 9, no. 11, pp. 360-363, Nov. 2002.
    [20] R. H. Chan, C. W. Ho, and M. Nikolova, “Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization,” IEEE Trans. Image Process., vol. 14, no. 10, pp. 1479–1485, Oct. 2005.
    [21] P. E. Ng and K. K. Ma, “A switching median filter with boundary discriminative noise detection for extremely corrupted images,” IEEE Trans. Image Process., vol. 15, no. 6, pp. 1506–1516, Jun. 2006.
    [22] P.-Y. Chen and C.-Y. Lien, “An Efficient Edge-Preserving Algorithm for Removal of Salt-and-Pepper Noise,” IEEE Signal Process. Lett., vol. 15, pp. 833-836, Dec. 2008.
    [23] T. Nodes and N. Gallagher, “Median filters: some modifications and their properties,” IEEE Trans. ASSP, vol. ASSP-30, no. 5, pp. 739-746, Oct. 1982.
    [24] S.-J. Ko and Y.-H. Lee, “Center weighted median filters and their applications to image enhancement,” IEEE Trans. Circuits Syst., vol. 38, no. 9, pp. 984-993, Sept. 1991.
    [25] T. Sun and Y. Neuvo, “Detail-preserving median based filters in image processing,” Pattern Recognit. Lett., vol. 15, pp. 341–347, Apr. 1994.
    [26] E. Abreu, M. Lightstone, S. K. Mitra, and K. Arakawa, “A new efficient approach for the removal of impulse noise from highly corrupted images,” IEEE Trans. Image Process., vol. 5, no. 6, pp. 1012–1025, Jun. 1996.
    [27] T. Chen and H. R. Wu, “Adaptive impulse detection using center-weighted median filters,” IEEE Signal Process. Lett., vol. 8, no. 1, pp. 1–3, Jan. 2001.
    [28] T. Chen and H. R.Wu, “Space variant median filters for the restoration of impulse noise corrupted images,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 48, no. 8, pp. 784–789, Aug. 2001.
    [29] W. Luo, “An efficient detail-preserving approach for removing impulse noise in images,” IEEE Signal Process. Lett., vol. 13, no. 7, pp. 413-416, Jul. 2006.
    [30] I. Aizenberg, and C. Butakoff, “Effective impulse detector based on rank-order criteria,” IEEE Signal Process. Lett., vol. 11, no. 3, pp. 363-366, Mar. 2004.
    [31] H. Yu, L. Zhao and H. Wang, “An Efficient Procedure for Removing Random-Valued Impulse Noise in Images,” IEEE Signal Process. Lett., vol. 15, pp. 922-925, Jul. 2008.
    [32] Y. Dong and S. Xu, “A new directional weighted median filter for removal of random-valued impulse noise,” IEEE Signal Process. Lett., vol. 14, no. 3, pp. 193–196, Mar. 2007.
    [33] 林一帆,「影像隨機脈衝雜訊移除技術之設計與實現」,國立成功大學資訊工程學系,碩士論文,97 學年度。
    [34] S. Fifman, “Digital rectification of ERTS multispectral imagery,” in Proc. Significant Results Obtained from Earth Resources Technology Satellite-1, 1973, vol. 1, pp. 1131-1142.
    [35] J. A. Parker, R. V. Kenyon, and D. E. Troxel, “Comparison of interpolation methods for image resampling,” IEEE Trans. Med. Imag., vol. MI-2, no. 3, pp. 31-39, Sep. 1983.
    [36] H. Hou and H. C. Andrews, “Cubic Splines for image Interpolation and Digital Filtering,” IEEE Trans. Acoustics, Speech & Signal Proc., vol. ASSP-26, no.6, pp. 508-517, Dec, 1978.
    [37] C. Kim, S. M. Seong, J. A. Lee, and L. S. Kim, “Winscale: An Image-Scaling Algorithm Using an Area Pixel Model,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 6, pp. 549-553, June 2003.
    [38] P-Y Chen, C-Y Lien, and C-P Lu, “VLSI Implementation of an Edge-Oriented Image Scaling Processor,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst, vol. 17, no. 9, pp. 1275-1284, Sept. 2009.
    [39] Y. Cha and S. Kim, “The Error-Amended Sharp Edge (EASE) Scheme for Image Zooming,” IEEE Trans. Image Process., vol. 16, no. 6, pp. 1496- 1505, June 2007.
    [40] Q. Wang and R. K. Ward, “A New Orientation-Adaptive Interpolation Method,” IEEE Trans. Image Process., vol. 16, no. 4, pp. 889-900, Apr. 2007.
    [41] J. Mukherjee and S. K. Mitra, “Image resizing in the compressed domain using subband DCT,” IEEE Trans. Circuits Syst. Video Technol., vol. 12, no. 7, pp. 620-627, Jul. 2002.
    [42] J. Mukhopadhyay and S. K. Mitra, “Resizing of images in the DCT space by arbitrary factors,” in Proc. 2004 IEEE Int. Conf. Image Process., Mar. 2004, pp. 2801-2804.
    [43] C. Salazar and T. D. Tran, “A Complexity Scalable Universal DCT Domain Image Resizing Algorithm,” IEEE Trans. on Circuits Syst. Video Technol., vol. 17, no. 4, pp. 495-499, Apr. 2007.
    [44] K-S Choi and S-J Ko, “Fast Content-Aware Image Resizing Scheme in the Compressed Domain,” IEEE Tran. on Consumer Electronics, vol. 55, no. 3, pp. 1514-1521, Aug. 2009.
    [45] C. C. Lin, Z. C. Wu, W. K. Tsai, M. H. Sheu, and H. K. Chiang, “The VLSI design of winscale for digital image scaling,” in Proc. IEEE Int. Conf. Intelligent Information Hiding and Multimedia Signal Processing, 2007, pp. 511-514.
    [46] C. C. Lin, M. H. Sheu, H. K. Chiang, W. K. Tsai, and Z. C. Wu, “Real-Time FPGA architecture of extended linear convolution for digital image scaling,” in Proc. IEEE Int. Conf. Field-Programmable Technology, 2008, pp. 381-384.
    [47] C. C. Lin, M. H. Sheu, H. K. Chiang, C. L. Liaw and Z. C. Wu, “The efficient VLSI design of BI-CUBIC convolution interpolation for digital image processing,” in Proc. IEEE Int Conf. Circuits and System, 2008, pp. 480-483.
    [48] 馬清軒,「影像邊緣保留摺積插補演算法之設計與實現」,國立成功大學資訊工程學系,碩士論文,98 學年度。
    [49] Wide-angle lens, http://en.wikipedia.org/wiki/Wide-angle_lens
    [50] Infrared photography, http://en.wikipedia.org/wiki/Infrared_photography
    [51] Data loss, http://en.wikipedia.org/wiki/Data_loss
    [52] Error detection and correction, http://en.wikipedia.org/wiki/Error_detection_and_correction
    [53] Image Scaling, https://en.wikipedia.org/wiki/Image_scaling
    [54] Automatic Number Plate Recognition, http://en.wikipedia.org/wiki/Automatic_number_plate_recognition
    [55] Rabia Jafri and Hamid R. Arabnia, “A Survey of Face Recognition Techniques,” Journal of Information Processing Systems, vol. 5, no. 2, June 2009.
    [56] J. D. Bruguera, N. Guil, T. Lang, J. Villalba, and E. L. Zapata, “CORDIC based parallel/pipelined architecture for the hough transform,” J. VLSI Signal Process., pp. 207-221, Jan. 2001.
    [57] D. D. Gajski, Principles of Digital Design. Upper Saddle River, NJ: Prentice-Hall, 1997.
    [58] Synopsys Inc., “DesignWare Building Block IP,” Available: http://www.synopsys.com
    [59] Barry De Ville, Decision Trees for Business Intelligence and Data Mining. 2007.
    [60] S. Rasoul Safavian and David Landgrebe, “A Survey of decision tree classifier methodology,” IEEE Trans. Syst. Man. Cybern., vol. 21, no. 3, pp 660-674, May 1991.
    [61] H.-H. Tsai, X.-P. Lin and B.-M. Chang, “An image filter with a hybrid impulse detector based on decision tree and particle swarm optimization,” in proc. IEEE Int. Conf. Man. Learn. Cybern., July 2009.
    [62] H.-L. Eng and K.-K. Ma, “Noise adaptive soft-switching median filter,” IEEE Trans. Image Process., vol. 10, no. 2, pp. 242–251, Feb. 2001.
    [63] G. Pok, J. Liu, and A. S. Nair “Selective removal of impulse noise based on homogeneity level information” IEEE Trans. Image Process., vol. 12, no. 1, Jan. 2003.
    [64] Z. Wang and D. Zhang, “Progressive Switching Median Filter for the Removal of Impulse Noise from Highly Corrupted Images,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 46, no. 1, Jan. 1999.
    [65] A.S. Awad and H. Man, “High performance detection filter for impulse noise removal in images,” IEEE Electron. Lett., vol. 44 no. 3, Jan. 2008.
    [66] X. Zhang and Y. Xiong, “Impulse Noise Removal Using Directional Difference Based Noise Detector and Adaptive Weighted Mean Filter,” IEEE Signal Process. Lett., vol. 16, no. 4, April 2009.
    [67] Z. Xu, H. R. Wu, B. Qiu, and X.Yu , “Geometric Features-Based Filtering for Suppression of Impulse Noise in Color Images,” IEEE Trans. Image Process., vol. 18, issue 8, pp. 1742-1759, Aug. 2009.
    [68] F.J. Gallegos-Funes, VI. Ponomaryov, S. Sadovnychiy and L. Nino-de-Rivera, “Median M-type K-nearest neighbour (MM-KNN) filter to remove impulse noise from corrupted images,” IEEE Electron. Lett., vol. 38, no. 15, July 2002.
    [69] Aizenberg, I., Butakoff, C. and Paliy, D., “Impulsive noise removal using threshold Boolean filtering based on the impulse detecting functions,” IEEE Signal Process. Lett., vol.12, no.1, 2005.
    [70] Z. Wang and D. Zhang, “Restoration of impulse noise corrupted images using long-range correlation,” IEEE Signal Process. Lett., vol. 5, no. 1, pp. 4-7, Jan. 1998.
    [71] 0.18μm TSMC/Artisan memory compiler, http://www.artisan.com.
    [72] S.-C. Hsia, “Parallel VLSI design for a real-time video-impulse noise-reduction processor,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst, vol. 11, no. 4, pp. 651-658, Aug. 2003.
    [73] I. Andreadis and G. Louverdis, “Real-time adaptive image impulse noise suppression,” IEEE Trans. Instrumentation and Measurement, vol. 53, no. 3, pp. 798-806, Jun. 2004.
    [74] V. Fischer, R. Lukac and K. Martin, “Cost-Effective Video Filtering Solution for Real-Time Vision Systems,” EURASIP Journal on Applied Signal Processing, vol. 13, pp. 2026-2042, Aug. 2005.
    [75] T. Matsubara, V.G. Moshnyaga and K. Hashimoto, “A FPGA implementation of low-complexity noise removal,” Electronics, Circuits, and Systems (ICECS), 2010 17th IEEE International Conference, pp.255-258, 12-15 Dec. 2010.
    [76] James F. Epperson, An introduction to numerical methods and analysis, John Wiley & Sons, 2007.
    [77] R. G. Keys, “Cubic Convolution Interpolation for Digital Image Processing,” IEEE Trans. on Acoustic, Speech, and Signal Processing, vol. ASSP-29, no. 6, pp. 1153-1160, Dec, 1981.
    [78] H. Kim, S. Jin, S. Yang, and J. Jeong, “Enhanced edge-weighted image interpolation algorithm,” in Proc. of 8th Int. Conf. Hybrid Intelligent Systems, pp. 957-958, Sept. 2008.

    無法下載圖示 校內:2023-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE