簡易檢索 / 詳目顯示

研究生: 許倩雯
Hui, Sin Man
論文名稱: 分數霍克斯過程下的脆弱選擇權定價
Pricing Vulnerable Options under Fractional Hawkes Process
指導教授: 劉裕宏
Liu, Yu-Hong
學位類別: 碩士
Master
系所名稱: 管理學院 - 會計學系
Department of Accountancy
論文出版年: 2024
畢業學年度: 113
語文別: 英文
論文頁數: 46
中文關鍵詞: 脆弱歐式選擇權定價流動性風險分數霍克斯過程
外文關鍵詞: Pricing Vulnerable European options, Liquidity risk, Fractional Hawkes process
相關次數: 點閱:36下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 脆弱選擇權是在場外交易市場中交易的一種衍生性金融商品,是具有違約風險的選擇權。傳統的文獻大多假設選擇權標的資產服從幾何布朗運動,但金融市場的波動甚大,因此,後續許多學者以跳躍擴散或是群聚跳躍模型代替幾何布朗運動來表示標的資產價值的波動。而在金融市場上,流動性是違約風險重要的因素,因為直接影響資產買賣能力和交易成本。具有良好流動性的市場意味著資產可以迅速、容易地買賣,且交易成本相對較低。這對於投資者和交易者來說非常重要,因為他們可以更容易進出市場,調整投資組合,或者快速執行交易策略。然而,缺乏流動性可能會導致市場價格的劇烈波動,因為即使有小量的交易量也可能對資產價格產生巨大影響。此外,低流動性可能會導致投資者難以及時進行交易,這可能使他們暴露於更大的風險中。因此,在金融市場上,流動性是確保市場有效運作和吸引投資者的關鍵因素之一。交易對手的資產在實際市場中很少被直接交易,這意味著交易對手資產的流動性可能相當有限。而Amihud 的流動性不足指標在實證文獻中非常受歡迎,但不適合於模擬有長期影響的流動性不足現象,使用Fractional Hawkes process的均值回歸跳躍模型來處理對數Amihud指標,使模型能夠準確地模擬出金融市場中真實出現的流動性短缺情況,同時在模型中引入長期依賴性和易處理性。這是現有 Hawkes 過程無法實現的。因此,我們可以使用這個模型來進行流動性不足的風險管理,並且可以引入和定價基於Amihud 指標的流動性衍生品。總結以上所述,本文主要將探討跳躍群聚的擴散模型下納入Fractional Hawkes process,建立出一個脆弱歐式選擇權定價公式。

    Vulnerable options are a type of derivative financial instrument traded in the over-the-counter market and are characterized by the presence of default risk. Traditional literature commonly assumes that the underlying assets of options follow geometric Brownian motion. However, given the significant volatility in financial markets, many scholars have substituted geometric Brownian motion with jump diffusion or clustered jump models to represent the fluctuations in underlying asset values. In financial markets, liquidity is a critical factor in default risk because it directly affects the ability to buy and sell assets and transaction costs. A market with good liquidity means that assets can be bought and sold quickly and easily, with relatively low transaction costs. This is very important for investors and traders as it enables easier market entry and exit, portfolio adjustment, or swift execution of trading strategies. However, a lack of liquidity can lead to drastic price fluctuations in the market, as even small transaction volumes may have a significant impact on asset prices. Additionally, low liquidity can make it difficult for investors to execute trades promptly, potentially exposing them to greater risks. Therefore, liquidity is one of the key factors ensuring efficient market operation and attracting investors in financial markets. Counterparty assets are rarely traded directly in actual markets, meaning that the liquidity of counterparty assets can be quite limited. Although Amihud's illiquidity measure is very popular in empirical literature, it is not suitable for simulating phenomena of long-term illiquidity. By employing a mean-reverting jump model using the Fractional Hawkes process to handle the logarithmic Amihud index, the model can accurately simulate the liquidity shortages observed in financial markets, while introducing long-term dependencies and tractability into the model. This is something that the existing Hawkes processes cannot achieve. Thus, we can use this model for liquidity risk management and to introduce and price liquidity derivatives based on the Amihud index. In summary, this paper primarily discusses the integration of the Fractional Hawkes process into a clustered jump diffusion model to establish a pricing formula for vulnerable European options.

    摘要1 Abstract 2 List of Contents3 List of Tables4 Section 1:Introduction5 Section 2:Literature Review11 Section 3:The Model15 3.1 Basic properties16 3.2 The Fractional Hawkes Processes17 3.3 Valuation of Vulnerable Option19 3.4 Specific cases of the proposed model22 Section 4:Numerical Results25 4.1 Distribution of the number of events25 4.2 Analyzing the Option Value of a Company26 4.3 Comparison with Alternative Models29 Section 5 : Conclusion36 References38 Appendix42

    Aït-Sahalia, Y., Cacho-Diaz, J., & Laeven, R. J. (2015). Modeling financial contagion using mutually exciting jump processes. Journal of Financial Economics, 117(3), 585-606.

    Ahn, J. (2024). Options illiquidity in an over-the-counter market. International Review of Financial Analysis, 94, 103303.

    Amihud, Y., & Mendelson, H. (2015). The pricing of illiquidity as a characteristic and as risk. Multinational Finance Journal, 19(3), 149-168.

    Arshanapalli, B., Fabozzi, F. J., & Nelson, W. (2013). The role of jump dynamics in the risk–return relationship. International Review of Financial Analysis, 29, 212-218.

    Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of political economy, 81(3), 637-654.

    Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 31(3), 307-327.

    Brennan, M., Huh, S. W., & Subrahmanyam, A. (2013). An analysis of the Amihud illiquidity premium. The Review of Asset Pricing Studies, 3(1), 133-176.

    Brunetti, C., & Caldarera, A. (2004). Asset prices and asset correlations in illiquid markets. Available at SSRN 625184.

    Cai, C., & Wang, X. (2023). Valuing vulnerable Asian options with liquidity risk under Lévy processes. Probability in the Engineering and Informational Sciences, 37(3), 653-673.

    Cetin, U., Jarrow, R., Protter, P., & Warachka, M. (2006). Pricing options in an extended Black Scholes economy with illiquidity: Theory and empirical evidence. The Review of Financial Studies, 19(2), 493-529.

    Czelleng, Á. (2024). A MONTE CARLO ANALYSIS OF THE DETERMINANTS OF MARKET LIQUIDITY AND ITS IMPLICATIONS FOR REGULATORY POLICYMAKERS. Journal of Governance and Regulation/Volume, 13(3).

    Dupret, J. L., & Hainaut, D. (2024). A fractional Hawkes process for illiquidity modeling. Mathematics and Financial Economics, 1-39.

    Engle, R. F. (1982). Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica, 50, 987-1007.

    El Euch, O., & Rosenbaum, M. (2019). The characteristic function of rough Heston models. Mathematical Finance, 29(1), 3-38.

    Errais, E., Giesecke, K., & Goldberg, L. R. (2010). Affine point processes and portfolio credit risk. SIAM Journal on Financial Mathematics, 1(1), 642-665.

    Feng, S. P., Hung, M. W., & Wang, Y. H. (2014). Option pricing with stochastic liquidity risk: Theory and evidence. Journal of Financial Markets, 18, 77-95.

    Gaver, D. P., & Lewis, P. A. (1980). First-order autoregressive gamma sequences and point processes. Advances in Applied Probability, 12(3), 727-745.

    Habyarimana, C., Aduda, J. A., Scalas, E., Chen, J., Hawkes, A. G., & Polito, F. (2023). A fractional Hawkes process II: Further characterization of the process. Physica A: Statistical Mechanics and its Applications, 615, 128596.

    Hainaut, D. (2020). Fractional hawkes processes. Physica A: Statistical Mechanics and its Applications, 549, 124330.

    Hawkes, A. G. (1971). Spectra of some self-exciting and mutually exciting point processes. Biometrika, 58(1), 83-90.

    Hawkes, A. G. (1971). Point spectra of some mutually exciting point processes. Journal of the Royal Statistical Society Series B: Statistical Methodology, 33(3), 438-443.

    Hawkes, A. G. (1972). Spectra of some mutually exciting point processes with associated variables. Stochastic point processes, 261-271.

    He, X. J., & Lin, S. (2023). Analytically pricing variance and volatility swaps under a Markov-modulated model with liquidity risks. The North American Journal of Economics and Finance, 67, 101918.

    Hull, J., & White, A. (1995). The impact of default risk on the prices of options and other derivative securities. Journal of Banking & Finance, 19(2), 299-322.

    Hung, M. W., & Liu, Y. H. (2005). Pricing vulnerable options in incomplete markets. Journal of Futures Markets: Futures, Options, and Other Derivative Products, 25(2), 135-170.

    Jarrow, R. A., & Protter, P. (2007). Liquidity risk and option pricing theory. Handbooks in Operations Research and Management Science, 15, 727-762.

    Jarrow, R. A., & Turnbull, S. M. (1995). Pricing derivatives on financial securities subject to credit risk. The journal of finance, 50(1), 53-85.

    Johnson, H., & Stulz, R. (1987). The pricing of options with default risk. The Journal of Finance, 42(2), 267-280.

    Jumarie, G. (2009). Laplace’s transform of fractional order via the Mittag–Leffler function and modified Riemann–Liouville derivative. Applied Mathematics Letters, 22(11), 1659-1664.

    Ketelbuters, J. J., & Hainaut, D. (2022). CDS pricing with fractional Hawkes processes. European Journal of Operational Research, 297(3), 1139-1150.

    Klein, P. (1996). Pricing Black-Scholes options with correlated credit risk. Journal of Banking & Finance, 20(7), 1211-1229.

    Klein, P., & Inglis, M. (2001). Pricing vulnerable European options when the option’s payoff can increase the risk of financial distress. Journal of Banking & Finance, 25(5), 993-1012.

    Lin, S., & He, X. J. (2024). Closed‐Form Formulae for Variance and Volatility Swaps Under Stochastic Volatility With Stochastic Liquidity Risks. Journal of Futures Markets, 44(8), 1447-1461.

    Li, Z., Zhang, W. G., Liu, Y. J., & Zhang, Y. (2019). Pricing discrete barrier options under jump-diffusion model with liquidity risk. International Review of Economics & Finance, 59, 347-368.

    Ma, Y., Shrestha, K., & Xu, W. (2017). Pricing vulnerable options with jump clustering. Journal of Futures Markets, 37(12), 1155-1178.

    Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics, 3(1-2), 125-144.

    Ogata, Y. (1988). Statistical models for earthquake occurrences and residual analysis for point processes. Journal of the American Statistical Association, 83(401), 9-27.

    Olga Roman (2024, December). KEY TRENDS IN THE SIZE AND COMPOSITION OF OTC DERIVATIVES MARKETS IN THE FIRST HALF OF 2024. ISDA. https://www.isda.org/a/GpbgE/Key-Trends-in-the-Size-and-Composition-of-OTC-Derivatives-Markets-in-the-First-Half-of-2024.pdf

    Pan, Y., Tang, D., & Wang, X. (2024). Valuation of vulnerable European options with market liquidity risk. Probability in the Engineering and Informational Sciences, 38(1), 65-81.

    Ramos, H. P., & Righi, M. B. (2020). Liquidity, implied volatility and tail risk: A comparison of liquidity measures. International Review of Financial Analysis, 69, 101463.

    Tian, L., Wang, G., Wang, X., & Wang, Y. (2014). Pricing vulnerable options with correlated credit risk under jump‐diffusion processes. Journal of Futures Markets, 34(10), 957-979.

    Wang, X. (2022). Pricing vulnerable options with stochastic liquidity risk. The North American Journal of Economics and Finance, 60, 101637.

    Xu, W., Xu, W., Li, H., & Xiao, W. (2012). A jump-diffusion approach to modelling vulnerable option pricing. Finance Research Letters, 9(1), 48-56.

    Zhang, H., Guo, X., Wang, K., & Huang, S. (2024). The valuation of American options with the stochastic liquidity risk and jump risk. Physica A: Statistical Mechanics and its Applications, 650, 129911.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE