| 研究生: |
陳兆誼 Zhen, Zhao-Yi |
|---|---|
| 論文名稱: |
耐火鋼與普通鋼及相關梁柱接頭銲道火害後反覆載重行為之研究 The Study on Cyclic Behaviors of Fire-Resistant Steel, Normal Structural Steel and the Related Beam-to-Column Connection Welds after Fire |
| 指導教授: |
鍾興陽
Chung, Hsin-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 260 |
| 中文關鍵詞: | 耐火鋼 、銲道 、熱處理 、火害後 、有限元素分析 、梁柱接頭 、反覆載重試驗 |
| 外文關鍵詞: | Fire-Resistant Steel, Weld Pass, Heat Treatment, Post Fire, Finite-Element Analysis, Beam-to-Column Connection, Cyclic Loading Test |
| 相關次數: | 點閱:141 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要在研究耐火等級SN490C-FR鋼材、耐震等級SN490B鋼材以及對應此兩種鋼材於梁柱接頭銲接用之兩種電熱熔渣銲(ESW)銲道與兩種包藥銲線電弧銲(FCAW)銲道在火害前後受到反覆載重作用下之材料行為,本研究將前述的每種材料進行五種溫度處理(未熱處理、800ºC氣冷、800ºC水冷、900ºC氣冷、900ºC水冷),用以模擬每種材料火害後可能的材質變化,每種溫度處理後之材料再各自製作成兩支反覆載重圓棒試體,分別進行固定應變振幅及漸增應變振幅兩種載重歷程之反覆載重試驗,藉以獲得材料於反覆載重作用下之應變硬化參數。試驗結果顯示:在未熱處理的材料中,兩種鋼材皆出現循環硬化現象,所有銲道皆呈現循環軟化現象;而所有材料在加熱900ºC後氣冷皆呈現循環硬化現象,所有材料在加熱900ºC後水冷皆呈現循環軟化現象。本研究亦將反覆載重試驗所獲得鋼材與銲道火害前後之材料應變硬化參數導入有限元素模型中,進行相同之反覆載重試驗的數值模擬,數值模擬結果顯示:所建立之有限元素數值模型在本研究探討的六種鋼材與銲道火害前後之應力與應變遲滯迴圈模擬有良好的結果。
This thesis mainly focused on studying the pre-fire and post-fire cyclic behaviors of fire-resistant (FR) grade steel SN490C-FR, earthquake- resistant grade steel SN490B, the two corresponding electroslag welding (ESW) materials and the two corresponding flux-cored arc welding (FCAW) materials. Five temperature treatment cases, including non-heat treatment, air-cooling after reaching 800ºC for 1 hour, water-cooling after reaching 800ºC for 1 hour, air-cooling after reaching 900ºC for 1 hour, and water-cooling after reaching 900ºC for 1 hour, were utilized to simulate the possible changes of each material after fire. Each material with a temperature treatment was manufactured into two round-bar specimens for constant-strain cyclic loading test and increased-strain cyclic loading test respectively. The test data were used to derive the strain hardening parameters for each material under cyclic loading. The test results showed that both of the two steels exhibited the cyclic hardening behavior, and all of the weld materials exhibited the cyclic softening behavior for non-heat treatment case. All the steels and weld materials demonstrated the cyclic hardening behavior for the case of air-cooling after reaching 900ºC for 1 hour, and demonstrated the cyclic softening behavior for the case of water-cooling after reaching 900ºC for 1 hour. In this study, the pre-fire and post-fire strain hardening parameters of each material were substituted into the finite-element numerical models to simulate the same cyclic test for verification. The numerical simulation results showed that the pre-fire and post-fire stress-strain hysteresis loops simulated from the developed finite-element numerical models for the considered six steels and weld materials agreed well with the experimental test results.
ABAQUS HTML Documentation, “User’s Manual,” Dassault Systèmes Simulia Corp., Providence, RI, USA.
AISC “Seismic Provisions for Structural Steel Buildings,” American Institute of Steel Construction, Chicago, Illonois, (2010).
ASTM E606-04 Standard Practice for Strain-Controlled Fatigue Testing, American Society for Testing and Materials, (2004).
AWS A5.20 Specification for Carbon Steel Electrodes for Flux Cored Arc Welding, American Welding Society, (2005).
AWS A5.25 Specification for Carbon and Low-Alloy Steel Electrodes and Fluxes for Electroslag Welding, American Welding Society, (2005)
AWS A5.29 Specification for Low-Alloy Steel Electrodes for Flux Cored Arc Welding, American Welding Society, (2010)
Bruneau, M., Uang, C.M. and Whittaker, A., Ductile Design of Steel Structures, McGraw-Hill, (1998).
Dusicka, P., Itani, A.M. and Buckle, I.G. “Cyclic Response of Plate Steels under Large Inelastic Strains,” Journal of Constructional Steel Research, Vol. 63, Issue 2, pp. 156-164, (2007).
Guptaa, C., Chakravarttya, J.K., Reddyb, G.R. and Banerjeec, S., “Uniaxial Cyclic Deformation Behaviour of SA 333 Gr 6 Piping Steel at Room Temperature,” International Journal of Pressure Vessels and Piping, Vol. 82, Issue 6, pp. 459-69, (2005).
Hopperstad, O.S., Langseth, M. and Remseth, S., “Cyclic Stress-Strain Behaviour of Alloy AA6060, Part I: Uniaxial Experiments and Modelling,” International Journal of Plasticity, Vol. 11, No. 6, pp. 741-762, (1995).
Kang, G., Gao, Q.and Yang, X., “Uniaxial Cyclic Ratcheting and Plastic Flow Properties of SS304 Stainless Steel at Room and Elevated Temperatures,” Mechanics of Materials, Vol. 34, Issue 3, pp. 145-159, (2002).
Nip, K.H., Gardner, L. and Elghazouli, A.Y., “Cyclic Testing and Numerical Modelling of Carbon Steel and Stainless Steel Tubular Bracing Members,” Engineering Structures, Vol. 32, Issue 2, pp. 424-441, (2010).
Paul, S.K., Sivaprasad, S., Dhar S., Tarafder, M. and Tarafder, S., “Simulation of Cyclic Plastic Deformation Response in SA333 C-Mn Steel by a Kinematic Hardening Model,” Computational Materials Science, Vol. 48, Issue 3, pp. 662-671, (2010).
Paul, S.K., Sivaprasad, S., Dhar S., Tarafder, M. and Tarafder, S., “Cyclic Plastic Deformation and Cyclic Hardening/Softening Behavior in 304LN Stainless Steel,” Theoretical and Applied Fracture Mechanics, Vol. 54, Issue 1, pp. 63-70, (2010).
Qiang, X., Bijlaard, F.S. and Kolstein, H., “Post-Fire Performance of Very High Strength Steel S960,” Journal of Constructional Steel Research, Vol. 80, pp. 235-242, (2013).
Qiang, X., Bijlaard, F.S. and Kolstein, H., “Post-Fire Mechanical Properties of High Strength Structural Steels S460 and S690,” Engineering Structures, Vol. 35, pp. 1-10, (2012).
Smith, C.I., Kirby, B.R., Lapwood, D.G., Cole, K.J., Cunningham, A.P. and Preston, R.R., “The Reinstatement of Fire Damaged Steel Framed Structures,” Fire Safety Journal, Vol. 4, Issue 1, pp. 21-62, (1981).
Shi, G., Wang, M., Bai, Y., Wang, F., Shi, Y. and Wang, Y., “Experimental and Modeling Study of High-Strength Structural Steel under Cyclic Loading,” Engineering Structures ,Vol. 37, pp. 1-13, (2012).
中華民國材料科學學會,「鋼鐵材料手冊」,科技叢書(1998)。
中華民國結構工程學會,「鋼結構設計手冊(極限設計法)」,科技圖書股份有限公司(2005)。
王士銘,「火害後梁柱接頭銲接區拉力實驗之研究」 ,碩士論文,國立成功大學土木工程系,台南(2011)。
方朝俊,「火害對耐火鋼構件銲接即栓接行為之影響」,碩士論文,國立台灣科技大學營建工程系,台北(2000)。
李明憲,「結構用鋼材火害後反覆載重行為之研究」 ,碩士論文,國立成功大學土木工程系,台南(2012)。
林志宏,「火害後鋼鐵材料微巨觀行為探討」,碩士論文,國立台灣工業技術學院營建工程技術研究所,台北(1997)。
林世平,「鋼鐵材料耐火被覆在火害中微巨觀行為研究」, 碩士論文,國立台灣科技大學,台北(2001)
林子賓,「高溫下螺栓孔支承強度之研究」 ,碩士論文,國立成功大學土木工程系,台南(2006)。
林克強、莊勝智、張福全、張柏彥,「台灣典型鋼梁與箱型柱採梁翼切削或梁翼加蓋板抗灣接頭之破壞模式」,鋼結構耐震設計與分析研討會論文集,國家地震中工程研究中心研究報告(NCREE-08-037),台南(2008)。
林秀芬,「結構鋼材在循環載重下之彈塑性行為研究」,碩士論文,國立暨南大學,南投(2008)。
周民瑜,「常見結構用鋼材火害後機械性質之研究」 ,碩士論文,國立成功大學土木工程系,台南(2008)。
吳家慶,「削切蓋板鋼骨梁柱接頭之耐震行為研究」 ,碩士論文,國立交通大學土木工程學系,新竹(2005)。
陳柏均,「利用耐火鋼增進鋼構建築耐火能力之實例研究」 ,碩士論文,國立成功大學土木工程系,台南(2011)。
粘進發,「鋼箱型柱電熱熔渣銲接區火害後拉力實驗之研究」,碩士論文,國立成功大學土木工程系,台南(2012)。
校內:2018-08-29公開