| 研究生: |
陳怡婷 Chen, Yi-Ting |
|---|---|
| 論文名稱: |
考量時間窗限制下多人協作揀貨之最佳路徑規劃與工作負荷均衡研究-以W公司為例 Optimization of Route Planning and Worker Load Balancing for Multi-worker Collaborative Order Picking Under Time Windows: A Case Study of Company W |
| 指導教授: |
王逸琳
Wang, I-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系碩士在職專班 Department of Industrial and Information Management (on the job class) |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 揀貨路徑 、負載均衡 、貪婪演算法 、基因演算法 、整數規劃 |
| 外文關鍵詞: | Picking Route, Load Balancing, Integer Programming, Genetic Algorithm, Greedy Algorithm |
| 相關次數: | 點閱:56 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著全球電子商務的蓬勃發展,倉儲管理在現代企業運營中扮演著越來越重要的角色。特別是在科技產業中,如何有效管理大量且種類繁多的庫存,並快速響應訂單需求,已成為企業競爭力的關鍵指標之一。本研究以W公司為例,探討了在複雜的倉儲環境中,如何最佳化多人協作的揀貨路徑規劃問題,同時考慮工作負載均衡和時間窗限制。
傳統的倉儲管理面臨諸多挑戰,如庫存空間有限、物料先進先出(FIFO)原則、多儲位揀貨等問題,這些因素都增加了揀貨作業的複雜性。為了提高作業效率,本研究將揀貨人員路徑規劃問題視為一種特殊的車輛途程問題(Vehicle Routing Problem, VRP),並提出了一個創新的數學規劃模式來求解此問題。
本研究考慮了多項實際因素,包括物料體積、搬運時間、儲位間距離、點到點行走時間等。在上述設定下,本研究一共開發了一個整數規劃模式可得精確最佳解、三種高效的貪婪類演算法:(1)「基本貪婪演算法」以工單交期排序做多人協同合作的揀貨分配與路線規劃;(2)「分群貪婪演算法」將同交期的所有工單視為一群,再依基本貪婪演算法行做分配揀貨排序與路線規劃;(3)「隨機貪婪演算法」則以分群貪婪演算法為基礎,但將同交期的揀貨以隨機排序,以產生更多樣類似品質的貪婪解;以及兩種基因類演算法;(4)「基本基因演算法」將物料被揀順序視為基因,而染色體為所有物料的揀選序列,利用基因演算法原理收斂出優秀的物料揀選序列,以此產生揀貨路徑;(5)「分群基因演算法」則結合交期分群和基因演算法的優點,按交期依序分群,然後使用基本基因演算法但限縮其突變與交配需在同一交期分群中處理。大量數值測試結果顯示,整數規劃僅能求解小規模問題,實務上以貪婪類演算法求解速率最快但無法精進,而基因類演算法則可在合理時限內改善精進其求解品質,為本研究屆推薦的最佳實務作法。
This study addresses the challenges in optimizing multi-worker collaborative order picking routes, focusing on load balancing and time window constraints. Using Company W as a case study, it develops a mathematical model with integer programming to optimize picking routes and worker assignments. Due to the problem’s complexity, three greedy algorithms (Basic, Random, Clustered) and two genetic algorithms (Basic, Clustered) are proposed for large-scale instances. Historical order data from Company W tests these algorithms, showing genetic algorithms outperform greedy ones in solution quality. The Basic Genetic Algorithm excels in minimizing maximum worker time difference and total picking time, while the Clustered Genetic Algorithm achieves the shortest total picking time by reducing unnecessary distant assignments. In large-scale scenarios, the Basic Genetic Algorithm performs best in minimizing total picking time and worker time difference, with the Clustered Genetic Algorithm ranking second due to its efficient parallel operations within due date clusters.
The study underscores the potential for enhancing order picking efficiency and optimizing human resource allocation in warehouse management through these methods. Future research should explore multi-level storage locations, improve algorithm efficiency, incorporate both inbound and outbound processes, and address material jurisdiction constraints.
李美儀. (2015).車輛路線相關問題之回顧與國內發展之分析。國立交通大學運輸與物流管理學系
林致瑄. (2015).應用PSO求解多艙種車輛路線問題。國立交通大學運輸與物流管理學系
Alajkovic, A., Brcic, M., Ivandic, V., Bubalo, L., Koncic, M., & Kovac, M. (2022).Delivery pattern planning in retailing with transport and warehouse workload balancing. Croatian Operational Research Review, 13(1), 99-111.
Brandao, J., & Mercer, A. (1997). A tabu search algorithm for the multi-trip vehicle routing and scheduling problem. European journal of operational research, 100(1), 180-191.
Chandra, P. (1993). A dynamic distribution model with warehouse and customer replenishment requirements. Journal of the Operational Research Society, 44(7), 681-692.
Chen, J., & Chen, S. (2008, October). Optimization of vehicle routing problem with load balancing and time windows in distribution. In 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing (pp. 1-4). IEEE.
Dantzig, G. B., & Ramser, J. H. (1959). The truck dispatching problem. Management science, 6(1), 80-91.
Desrochers, M., Desrosiers, J., & Solomon, M. (1992). A new optimization algorithm for the vehicle routing problem with time windows.Operations research, 40(2), 342-354.
dos Santos Alves, C. (2020). Vehicle Routing Problem with multiple trips and time constraints (VRPMTTC): A Case Study.url: https://repositorio-aberto.up.pt/bitstream/10216/132487/2/433649.pdf
El Fallahi, A., Prins, C., & Calvo, R. W. (2008). A memetic algorithm and a tabu search for the multi-compartment vehicle routing problem. Computers & Operations Research, 35(5), 1725-1741.
Fleischmann, B. (1990). The vehicle routing problem with multiple use of vehicles.Fachbereich Wirtschaftswissenschaften, Universität Hamburg.
Geng, Y., Li, Y., & Lim, A. (2005, November). A very large-scale neighborhood search approach to capacitated warehouse routing problem. In 17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05) (pp. 8-pp65). IEEE.
Gademann, N., & Velde, S. (2005). Order batching to minimize total travel time in a parallel-aisle warehouse. IIE transactions, 37(1), 63-75.
Kritikos, M. N., & Ioannou, G. (2010). The balanced cargo vehicle routing problem with time windows. International Journal of Production Economics, 123(1), 42-51.
Lee, T. R., & Ueng, J. H. (1999). A study of vehicle routing problems with load‐balancing. International Journal of Physical Distribution & Logistics Management. Vol. 29 No. 10, pp. 646-657.
Lin, L., Hu, J., & Shen, B. (2010, October). A new hybrid method of Genetic Algorithm, Tabu and Chaotic search for CVRPTW. In 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems (Vol. 2, pp. 336-340). IEEE.
Ostermeier, M., & Hübner, A. (2018). Vehicle selection for a multi-compartment vehicle routing problem. European Journal of Operational Research, 269(2), 682-694.
Raff, S. (1983). Routing and scheduling of vehicles and crews: The state of the art. Computers & Operations Research, 10(2), 63-211.
Rubrico, J. I., Higashi, T., Tamura, H., & Ota, J. (2011). Online rescheduling of multiple picking agents for warehouse management. Robotics and Computer-Integrated Manufacturing, 27(1), 62-71.
Savelsbergh, M. W. (1985). Local search in routing problems with time windows. Annals of Operations research, 4(1), 285-305.
Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems with time window constraints. Operations research, 35(2), 254-265.
Tompkins, J. A., White, J. A., Bozer, Y. A., Tanchoco, J. M. A., & Trevino, J. (1996). Facilities Planning. John Willey and Sons. Inc. 2nd edition. USA, 36-47.
Wang, C. L., & Li, S. W. (2018). Hybrid fruit fly optimization algorithm for solving multi-compartment vehicle routing problem in intelligent logistics. Advances in Production Engineering & Management, 13(4), 466-478.
Yu, N., Li, T., & Wang, B. (2021, December). Multi-load AGVs scheduling algorithm in automated sorting warehouse. In 2021 14th International Symposium on Computational Intelligence and Design (ISCID) (pp. 126-129). IEEE.