簡易檢索 / 詳目顯示

研究生: 洪玉瑜
Hung, Yu-yu
論文名稱: 雙重設選擇權之評價
Valuation of Double Reset Options
指導教授: 王明隆
Wang, Ming-long
學位類別: 碩士
Master
系所名稱: 管理學院 - 財務金融研究所
Graduate Institute of Finance
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 76
中文關鍵詞: 初始值問題格林函數積分方法重設權擇權
外文關鍵詞: reset options, integral method, initial value problems, Green' s function
相關次數: 點閱:82下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   重設選擇權(Reset option)具有一般選擇權之特性,差別在於允許履約價格在選擇權的權利期間內可改變,如市場低迷時,標的股價下跌至相當水準致使選擇權達到深度價外,附有重設條款的買權可給予持有者一定程度的保護,使履約價格往持有者有利的方向調整,對於國內多變化的股市投資環境來說,重設選擇權的確相當具有實用性。再者重設選擇權屬於路徑相依選擇權(Path-dependent option),可根據標的資產價格在持有期間的路徑調整其履約價格,當重設條件的內容改變時,重設選擇權的價格與重設機率亦會受到影響。如何滿足投資人的投資需求卻不使商品在評價方法上過於複雜是值得去深思熟慮的。

      本研究擬採解決PDE最有效率之ㄧ的格林函數方法,應用於解決雙重設價之重設買權評價問題。透過變數變換將Black-Scholes模型PDE簡化成線性同質熱傳導方程式(Heat equation),分析標的資產價格路徑,配合契約內容定義每一期之初始條件,並輔以遞迴積分方法轉化成一連串的初始值問題,進而解出雙重設價之重設買權價格。

      研究結果發現積分方法應用在雙重設價之重設選擇權,不但減少了誤差,其數值收斂order可高達四,提高了計算效率。最後,針對雙重設價之重設契約中各個參數作敏感度分析。

      Today, as the wide varieties of financial instruments dazzle, reset options trade in numerical of markets worldwide and are structured to target investor preferences. In this article, we derive a generalization of reset call option with two predetermined dates in the case of two dependent strike resets by applying the integral representation in form of the Green's function recursively. We solve the pricing problem of the double reset option by the recursive integral method defined as a series of initial value problems at specific discrete monitoring dates. Finally, the numerical results provide the sensitivity of reset value with respect to some variables and explore some unique characteristics of the double reset feature.

      The findings are as follows. The proposed method exploited in our numerical example is proven to have a convergence rate of order 4. Hence, the suggested method is efficient and accurate enough to value the European double reset option. On the other hand, the discontinuities in the solutions are caused by the reset feature when pricing PDE at respective reset dates. Due to more protection toward the holders of reset options, the values of reset options are always greater than that of standard call option.

      Moreover, there are some unique results with respect to the two strike resets and reset dates of the double reset call option:

    (1)Under the same first strike reset, lower second strike resets will result in higher reset values in the cases of lower current underlying stock prices than the second strike resets and vice versa. Analogously, under the same second strike reset, lower first strike resets will result in higher reset values and give more attraction for investors in the cases of lower current underlying stock prices than the first strike resets and vice versa.

    (2)As the volatility of stock returns increases, it becomes more likely that the lower reset condition will be attained so that both the strike resets can be lower to satisfy the needs of investors.

    (3)Placing the reset date close to the issuing date limits its likelihood of reset. However, this principle has an exception that the reset feature is more valuable for deep out-of-the-money double reset call options when the first reset date is close to the issuing date.

    (4)The reset feature has little value when the second reset date is close to the expiration date.

    Abstract.................................................ii Contents.................................................v List of Figures.........................................vii List of Tables...........................................ix Chapter 1.Introduction....................................1 1.1Background...........................................1 1.2Classification of Reset Provisions...................4 A.Single reset at one reset price....................5 B.Single reset with multiple reset prices............6 C.Multiple resets with one unique reset price each...6 D.Multiple resets with multiple reset prices.........7 1.3Research Motivations................................7 1.4Research Objectives..................................8 1.5Structure of Thesis..................................9 Chapter 2.Literature Review..............................10 2.1 Closed-Form Solutions..............................10 2.2 Lattice Model......................................12 2.3 Replication........................................12 2.4 Monte Carlo Simulation.............................13 2.5 Current Research...................................14 Chapter 3.Methodology....................................16 3.1 Contract Specifications with Two Predetermined Reset Dates...............................................16 3.2 Preliminaries and Initial Value Problem............19 3.3 Double Reset Option Valuation Algorithm..........22 Chapter 4.Numerical Analysis of Double Reset Options.....28 4.1 Convergence in Different Integral Partitions.....28 4.2 Components of Double Reset Options...............35 4.3 Characteristics of Double Reset Options..........37 Chapter 5.Summary and Conclusion.........................64 5.1 Conclusion.......................................64 5.2 Further Research.................................66 References...............................................68 Appendix.................................................70

    [1]Black, F., Scholes, M., 1973, The Pricing of Options and Corporate Liabilities, Journal of Political Economy 81, 637-654.
    [2]Boyle, P.P., Lau, S.H., 1994, Bumping Up Against the Barrier with the Binomial Method, Journal of Derivatives 1, 6-14.
    [3]Boyle, P.P., Kolkiewicz, A.W., Tan, K.S., 2001,Valuation of the Reset Options Embedded in Some Equity-Linked
    Insurance Product, North American Actuarial Journal 5, 3.
    [4]Cox, J.C., Ross, S.A., Rubinstein, M., 1979, Option pricing:A Simplified Approach,Journal of Financial Economics 7, 229-264.
    [5]Cheng, W., Zhang, S., 2000, The Analytics of Reset Options, Journal of Derivatives,
    Fall, 59-71.
    [6]Deàk, I., 1988, Multidimensional Integration and Stochastic Programming. In Y. Ermoliev & R. J.-B. Wets(Eds.), Numerical Techniques for Stochastic Optimization,
    187-200, Berlin : Springer-Verlag.
    [7]Dai, M., Kwok, Y.K., Wu, L.X., 2003, Options with Multiple Reset Rights,International Journal of Theoretical and Applied FinanceVol.6, 6, 637-653.
    [8]Dai, M., Kwok, Y.K., 2005, Options with Combined Reset Rights on Strike and Maturity, Journal of Economic Dynamics & Control 29, 1495-1515.
    [9]Gollwitzer, S., Rackwitz, R., 1987, Comparison of Numerical Schemes for The Multinormal Integral. In Reliability and Optimization of Structural Systems, Lecture notes in engineering 33, 157-174, Berlin : Springer-Verlag.
    [10]Gray, S., Whaley, R., 1997, Valuing S&P 500 Bear Market Reset Warrants with A Periodic Reset, Journal of Derivatives 5 , 99-106.
    [11]Gray, S., Whaley, R., 1999, Reset Put Options : Valuation, Risk Characteristics, and An Application, Australian Journal of Management 24, 1-20.
    [12]Hsueh, L.P., Liu, Y.A., 2002, Step-Reset Options: Design and Valuation, The Journal of Futures Markets 22, 2.
    [13]Kimura, T., Shinohara, T., 2004, Monte Carlo Analysis of Convertible Bonds with Reset Clauses, European Journal of Operational Research 168, 301-310.
    [14]Liao, S.L., Wang, C.W., 2002, Pricing Arithmetic Average Reset Options with Control Variates, The Journal of Derivatives 10, 2.
    [15]Liao, S.L., Wang, C.W., 2003, The Valuation of Reset Options with Multiple Strike Resets and Reset Dates, The Journal of Futures Markets 23, 1.
    [16]Li, S.J., Li, S.H., Sun, C., 2005, A Generalization of Reset Options Pricing Formulae with Stochastic Interest Rates, Research in International Business and Finance 71, 15.
    [17]Merton, R.C., 1973, Theory of Rational Option Pricing, Bell Journal of Economics and Management Science 4, 141-183.
    [18]Ritchken, P., 1995, On Pricing Barrier Options, Journal of Derivatives 3,19-28.
    [19]Vijverberg, W. P. M., 1997, Monte Carlo Evaluation of Multivariate Normal Probabilities, Journal of Econometrics 76, 281-307.

    下載圖示 校內:2008-07-02公開
    校外:2008-07-02公開
    QR CODE