| 研究生: |
潘薇如 Pan, Wei-Ju |
|---|---|
| 論文名稱: |
H2O2及 UV對柱孢藻產毒與基因表現之影響 Impacts of H2O2 and UV on toxin production and gene expression in Cylindrospermopsis raciborskii |
| 指導教授: |
林財富
Lin, Tsair-Fuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | 柱孢藻 、柱孢藻毒素 、過氧化氫 、UV 、氫氧自由基 、基因表現 |
| 外文關鍵詞: | Cylindrospermopsis raciborskii, cylindrospermopsin, hydrogen peroxide, UV, gene expression |
| 相關次數: | 點閱:46 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
藍綠菌藻華為水中細胞過度繁殖的現象,除了使水質惡化外,細胞增長也常伴隨著二次代謝物的產生,這些二次代謝物可能帶來臭味、毒性的問題,增加淨水處理程序的負荷,並對用水民眾的健康造成威脅。對於藻華的應對方法,可分成(1)湖庫水體的控制以及(2)淨水流程的去除兩部分。在湖庫控制方面,常以殺藻劑或氧化劑來抑制藻體的過度生長;而在淨水流程中則常透過前氧化程序、混凝沉澱及過濾單元來去除大部分的藻體。而當處理後剩餘存活的藍綠菌,可能會受到低劑量氧化劑的刺激而產生環境壓力,隨即影響細胞的基因表現,進而改變代謝物的生成情形,若因此造成產毒量的增加,則會造成處理單元的負擔並衍生用水安全的風險。
本研究欲透過相對基因表現量、細胞破裂情形與毒素濃度生成、釋出及降解的分析,試圖以基因表現量與產毒量之間的關係模擬產毒量的變化,並以拉氏柱孢藻(Cylindrospermopsis raciborskii)為主要對象,評估H2O2無光照、UV及UV搭配H2O2的應用對於柱孢藻細胞的影響,後續可用於飲用水水源控制管理及風險評估之參考。本研究首先確立RNA樣品的保存條件,選用DNA/RNA Shield作為RNA樣品的保存藥劑,並以RT-qPCR技術(Reverse Transcription q-PCR)定量樣品中mRNA濃度以評估相對基因表現量;接著優化PMA-qPCR (Viable-PCR)應用於拉氏柱孢藻之操作條件,以30 µM的PMA染劑濃度以及5分鐘的光反應時間作為後續批次實驗的操作參數,進行細胞完整性的分析;毒素濃度則以酵素連結免疫吸附分析法(ELISA)進行分析。
上述之方法皆應用於後續之批次實驗中樣品分析,而批次實驗條件則以H2O2無光照、UV及UV/H2O2為主,分別探討H2O2、UV及‧OH對細胞造成之影響、毒素與基因表現的變化。研究結果顯示,H2O2在本研究執行的條件下,對柱孢藻毒素的降解作用可忽略不計,且在相對產毒基因表現量呈現下降的現象;在15 Wm-2 UV暴露下,柱孢藻毒素降解速率常數為9.42×10-6 s-1,柱孢藻產毒基因表現量上升;UV降解柱孢藻毒素速率明顯高於毒素的生成,柱孢藻毒素的濃度整體持平或略微下降;UV/H2O2系統則有‧OH的生成,使相對產毒基因表現量呈下降的現象,因此不會有額外的毒素增加。由於本研究執行的條件下‧OH對柱孢藻毒素的降解量可忽略不計,因此在有‧OH的條件下,柱孢藻毒素的整體趨勢仍為持平。
整體而言,以H2O2作為氧化劑在無光照環境、以及UV搭配H2O2的系統下,並不會刺激柱孢藻毒素的產生,pks相對基因表現量下降至0.2- 0.8倍,因此無衍生的柱孢藻毒素危害的風險。相對地,UV則會刺激柱孢藻細胞,使其產毒基因表現量增加至2- 4倍,導致有產生更多柱孢藻毒素的風險發生。此結果可提供後續研究或水源管理時選用氧化劑及劑量時作為參考。
Cyanobacterial blooms may deteriorate water quality, deplete dissolved oxygen and produce toxins and/or taste and odor compounds. Oxidation is a common way to control cyanobacteria in lakes, reservoirs and water treatment plants. However, if the oxidant dose is not appropriately applied, cyanobacteria cells may be only partially lysed. Under this condition, the remaining cyanobacteria may be exposed to oxidative stress, leading to changes of gene expression and toxin production. Thus, it’s important to study the responses of the cells under oxidative stress.
Cylindrospermopsis raciborskii is selected as the target species in this study, as it is one of the dominant cyanobacteria present in many reservoirs in Taiwan. Various parameters were tested in batch experiments, including light and dark condition, H2O2 in dark condition, UV, UV/H2O2 and UV/H2O2 with hydroxyl radical scavenger. The cell integrity, toxin concentration and relative gene expression were analyzed to study the cell responses under the environmental stress. For sample analysis, cell integrity was determined by PMA-qPCR, toxin concentration was detected using ELISA, and gene expression were calculated from mRNA concentration which was quantified by RNA extraction and RT-qPCR processes.
The results showed that gene expression changed in response to different environmental conditions. The relative gene expression decreased in most of batch experiments except for the low dose UV condition. The relative gene expression was up-regulated to 2- 4 fold under low dose of UV, implying relatively high risk of additional toxin production.
Alster, A., Kaplan-Levy, R. N., Sukenik, A., & Zohary, T. (2010). Morphology and phylogeny of a non-toxic invasive Cylindrospermopsis raciborskii from a Mediterranean Lake. Hydrobiologia, 639(1), 115-128.
Anderson, D. M., Glibert, P. M., & Burkholder, J. M. (2002). Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries, 25(4), 704-726.
Antunes, J. T., Leão, P. N., & Vasconcelos, V. M. (2015). Cylindrospermopsis raciborskii: review of the distribution, phylogeography, and ecophysiology of a global invasive species. Frontiers in Microbiology, 6, 473.
Armah, A., Hiskia, A., Kaloudis, T., Chernoff, N., Hill, D., Antoniou, M. G., . . . Zhao, C. (2013). A review on cylindrospermopsin: the global occurrence, detection, toxicity and degradation of a potent cyanotoxin. Environmental Science: Processes & Impacts, 15(11), 1979-2003.
Arya, M., Shergill, I. S., Williamson, M., Gommersall, L., Arya, N., & Patel, H. R. (2005). Basic principles of real-time quantitative PCR. Expert review of molecular diagnostics, 5(2), 209-219.
Barón-Sola, Á., del Campo, F. F., & Sanz-Alférez, S. (2016). Dynamics of Cylindrospermopsin Production and Toxin Gene Expression in Aphanizomenon ovalisporum. Advances in Microbiology, 6(5), 381-390.
Barrington, D. J., & Ghadouani, A. (2008). Application of hydrogen peroxide for the removal of toxic cyanobacteria and other phytoplankton from wastewater. Environmental Science & Technology, 42(23), 8916-8921.
Beamud, G., Vico, P., Haakonsson, S., de la Escalera, G. M., Piccini, C., Brena, B. M., . . . Bonilla, S. (2016). Influence of UV-B radiation on the fitness and toxin expression of the cyanobacterium Cylindrospermopsis raciborskii. Hydrobiologia, 763(1), 161-172.
Beck, S. E., Rodriguez, R. A., Hawkins, M. A., Hargy, T. M., Larason, T. C., & Linden, K. G. (2016). Comparison of UV-induced inactivation and RNA damage in MS2 phage across the germicidal UV spectrum. Applied and Environmental Microbiology, 82(5), 1468-1474.
Biosciences, B. D. (2000). Introduction to Flow Cytometry: A learning guide. Manual Part, 1(1).
Biotium. (2015). VIABILITY PCR: PMAxx™ and PMA Viability PCR Dyes. Retrieved from https://biotium.com/technology/microbiology/pma-for-viability-pcr/
Bourke, A., Hawes, R., Neilson, A., & Stallman, N. (1983). An outbreak of hepato-enteritis (the Palm Island mystery disease) possibly caused by algal intoxication. Toxicon, 21, 45-48.
BRMS. (2005). Comments on Regulation MS N. 518/2004: Subsidies for Implementation. Ministério da Saúde(Brasil)
Buratti, F. M., Manganelli, M., Vichi, S., Stefanelli, M., Scardala, S., Testai, E., & Funari, E. (2017). Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Archives of toxicology, 91(3), 1049-1130.
Burford, M. A., Davis, T. W., Orr, P. T., Sinha, R., Willis, A., & Neilan, B. A. (2014). Nutrient-related changes in the toxicity of field blooms of the cyanobacterium, Cylindrospermopsis raciborskii. FEMS Microbiology Ecology, 89(1), 135-148.
Campinas, M., & Rosa, M. J. (2010). Removal of microcystins by PAC/UF. Separation and Purification Technology, 71(1), 114-120.
Carmichael, W. W. (1992). Cyanobacteria secondary metabolites—the cyanotoxins. Journal of applied bacteriology, 72(6), 445-459.
Carmichael, W. W. (2001). Health effects of toxin-producing cyanobacteria:“The CyanoHABs”. Human and ecological risk assessment: An International Journal, 7(5), 1393-1407.
Carneiro, R. L., dos Santos, M. E. V., Pacheco, A. B. F., & Azevedo, S. M. F. d. O. e. (2009). Effects of light intensity and light quality on growth and circadian rhythm of saxitoxins production in Cylindrospermopsis raciborskii (Cyanobacteria). Journal of Plankton research, 31(5), 481-488.
Chang, C.-W. (2015). 過氧化氫與二氧化鈦在可見光催化系統下對微囊藻之破壞及其毒素釋出降解之研究. 成功大學環境工程學系學位論文, 1-99.
Chang, C.-W., Huo, X., & Lin, T.-F. (2018). Exposure of Microcystis aeruginosa to hydrogen peroxide and titanium dioxide under visible light conditions: Modeling the impact of hydrogen peroxide and hydroxyl radical on cell rupture and microcystin degradation. water research, 141, 217-226.
Chiswell, R. K., Shaw, G. R., Eaglesham, G., Smith, M. J., Norris, R. L., Seawright, A. A., & Moore, M. R. (1999). Stability of cylindrospermopsin, the toxin from the cyanobacterium, Cylindrospermopsis raciborskii: effect of pH, temperature, and sunlight on decomposition. Environmental Toxicology: An International Journal, 14(1), 155-161.
Cho, M., Chung, H., & Yoon, J. (2003). Disinfection of water containing natural organic matter by using ozone-initiated radical reactions. Applied and Environmental Microbiology, 69(4), 2284-2291.
Davey, H. M., & Kell, D. B. (1996). Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiological reviews, 60(4), 641-696. Retrieved from https://mmbr.asm.org/content/mmbr/60/4/641.full.pdf.
Dixon, M. B., Falconet, C., Ho, L., Chow, C. W., O’Neill, B. K., & Newcombe, G. (2011). Removal of cyanobacterial metabolites by nanofiltration from two treated waters. Journal of hazardous materials, 188(1-3), 288-295.
DNA/RNA Shield™ Product Information. ZYMO RESEARCH CORP.
Drábková, M., Matthijs, H., Admiraal, W., & Maršálek, B. (2007). Selective effects of H2O2 on cyanobacterial photosynthesis. Photosynthetica, 45(3), 363-369.
Elovitz, M. S., & von Gunten, U. (1999). Hydroxyl radical/ozone ratios during ozonation processes. I. The Rct concept.
Esplugas, S., Gimenez, J., Contreras, S., Pascual, E., & Rodrı́guez, M. (2002). Comparison of different advanced oxidation processes for phenol degradation. water research, 36(4), 1034-1042.
Fan, J., Ho, L., Hobson, P., & Brookes, J. (2013). Evaluating the effectiveness of copper sulphate, chlorine, potassium permanganate, hydrogen peroxide and ozone on cyanobacterial cell integrity. water research, 47(14), 5153-5164.
Fleige, S., & Pfaffl, M. W. (2006). RNA integrity and the effect on the real-time qRT-PCR performance. Molecular aspects of medicine, 27(2-3), 126-139.
Funari, E., & Testai, E. (2008). Human health risk assessment related to cyanotoxins exposure. Critical reviews in toxicology, 38(2), 97-125.
Hawkins, P. R., Runnegar, M. T., Jackson, A., & Falconer, I. (1985). Severe hepatotoxicity caused by the tropical cyanobacterium (blue-green alga) Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Raju isolated from a domestic water supply reservoir. Applied and Environmental Microbiology, 50(5), 1292-1295.
He, X., Armah, A., & Dionysiou, D. D. (2013). Destruction of cyanobacterial toxin cylindrospermopsin by hydroxyl radicals and sulfate radicals using UV-254 nm activation of hydrogen peroxide, persulfate and peroxymonosulfate. Journal of Photochemistry and Photobiology A: Chemistry, 251, 160-166.
He, X., Liu, Y., Conklin, A., Westrick, J., Weavers, L. K., Dionysiou, D. D., . . . Walker, H. W. (2016). Toxic cyanobacteria and drinking water: Impacts, detection, and treatment. Harmful algae, 54, 174-193.
He, Y.-Y., & Häder, D.-P. (2002). Reactive oxygen species and UV-B: effect on cyanobacteria. Photochemical & Photobiological Sciences, 1(10), 729-736.
Heid, C. A., Stevens, J., Livak, K. J., & Williams, P. M. (1996). Real time quantitative PCR. Genome research, 6(10), 986-994.
Hislop, K. A., & Bolton, J. R. (1999). The Photochemical generation of hydroxyl radicals in the UV− vis/Ferrioxalate/H2O2 System. Environmental Science & Technology, 33(18), 3119-3126.
Ho, L., Lambling, P., Bustamante, H., Duker, P., & Newcombe, G. (2011). Application of powdered activated carbon for the adsorption of cylindrospermopsin and microcystin toxins from drinking water supplies. water research, 45(9), 2954-2964.
Ho, L., Slyman, N., Kaeding, U., & Newcombe, G. (2008). Optimizing PAC and chlorination practices for cylindrospermopsin removal. Journal‐American Water Works Association, 100(11), 88-96.
Ho, L., Tang, T., Hoefel, D., & Vigneswaran, B. (2012). Determination of rate constants and half-lives for the simultaneous biodegradation of several cyanobacterial metabolites in Australian source waters. water research, 46(17), 5735-5746.
Hoff-Risseti, C., Dörr, F. A., Schaker, P. D. C., Pinto, E., Werner, V. R., & Fiore, M. F. (2013). Cylindrospermopsin and saxitoxin synthetase genes in Cylindrospermopsis raciborskii strains from Brazilian freshwater. PloS one, 8(8), e74238.
Hom, L. W. (1972). Kinetics of chlorine disinfection in an ecosystem. Journal of the Sanitary Engineering Division, 98(1), 183-194.
Horst, G. P., Sarnelle, O., White, J. D., Hamilton, S. K., Kaul, R. B., & Bressie, J. D. (2014). Nitrogen availability increases the toxin quota of a harmful cyanobacterium, Microcystis aeruginosa. water research, 54, 188-198.
Huang, Z., Zheng, J., Shi, C., & Chen, Q. (2018). Flow cytometry-based method facilitates optimization of PMA treatment condition for PMA-qPCR method. Molecular and cellular probes, 40, 37-39.
Huggett, J., Dheda, K., Bustin, S., & Zumla, A. (2005). Real-time RT-PCR normalisation; strategies and considerations. Genes & Immunity, 6(4), 279-284.
Humpage, A., & Falconer, I. (2003). Oral toxicity of the cyanobacterial toxin cylindrospermopsin in male Swiss albino mice: determination of no observed adverse effect level for deriving a drinking water guideline value. Environmental Toxicology: An International Journal, 18(2), 94-103.
Huo, X., Chang, D.-W., Tseng, J.-H., Burch, M. D., & Lin, T.-F. (2015). Exposure of microcystis aeruginosa to hydrogen peroxide under light: Kinetic modeling of cell rupture and simultaneous microcystin degradation. Environmental Science & Technology, 49(9), 5502-5510.
Imbeaud, S., Graudens, E., Boulanger, V., Barlet, X., Zaborski, P., Eveno, E., . . . Auffray, C. (2005). Towards standardization of RNA quality assessment using user-independent classifiers of microcapillary electrophoresis traces. Nucleic acids research, 33(6), e56-e56.
Jančula, D., & Maršálek, B. (2011). Critical review of actually available chemical compounds for prevention and management of cyanobacterial blooms. Chemosphere, 85(9), 1415-1422.
Jia, P., Zhou, Y., Zhang, X., Zhang, Y., & Dai, R. (2018). Cyanobacterium removal and control of algal organic matter (AOM) release by UV/H2O2 pre-oxidation enhanced Fe (II) coagulation. water research, 131, 122-130.
Joo, S., Park, P., & Park, S. (2019). Applicability of propidium monoazide (PMA) for discrimination between living and dead phytoplankton cells. PloS one, 14(6), e0218924.
Kaebernick, M., Neilan, B. A., Börner, T., & Dittmann, E. (2000). Light and the transcriptional response of the microcystin biosynthesis gene cluster. Applied and Environmental Microbiology, 66(8), 3387-3392.
Kellmann, R., Mihali, T. K., Jeon, Y. J., Pickford, R., Pomati, F., & Neilan, B. A. (2008). Biosynthetic intermediate analysis and functional homology reveal a saxitoxin gene cluster in cyanobacteria. Applied and Environmental Microbiology, 74(13), 4044-4053.
Kinnear, S. (2010). Cylindrospermopsin: a decade of progress on bioaccumulation research. Marine drugs, 8(3), 542-564.
Kokociński, M., Cameán, A. M., & Carmeli, S. (2017). Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis (Jussi Meriluoto, Lisa Spoof, & G. A. Codd Eds.).
Kokociński, M., Mankiewicz-Boczek, J., Jurczak, T., Spoof, L., Meriluoto, J., Rejmonczyk, E., . . . Soininen, J. (2013). Aphanizomenon gracile (Nostocales), a cylindrospermopsin-producing cyanobacterium in Polish lakes. Environmental Science and Pollution Research, 20(8), 5243-5264.
Kramer, M., Obermajer, N., Matijašić, B. B., Rogelj, I., & Kmetec, V. (2009). Quantification of live and dead probiotic bacteria in lyophilised product by real-time PCR and by flow cytometry. Applied microbiology and biotechnology, 84(6), 1137-1147.
Kuang, J., Yan, X., Genders, A. J., Granata, C., & Bishop, D. J. (2018). An overview of technical considerations when using quantitative real-time PCR analysis of gene expression in human exercise research. PloS one, 13(5), e0196438.
Kwon, B., Park, N., & Cho, J. (2005). Effect of algae on fouling and efficiency of UF membranes. Desalination, 179(1-3), 203-214.
Lee, J., & Walker, H. W. (2006). Effect of process variables and natural organic matter on removal of microcystin-LR by PAC− UF. Environmental Science & Technology, 40(23), 7336-7342.
Lei, L., Lei, M., Lu, Y., Peng, L., & Han, B.-P. (2019). Development of real-time PCR for quantification of Cylindrospermopsis raciborskii cells and potential cylindrospermopsin-producing genotypes in subtropicalreservoirs of southern China. Journal of Applied Phycology, 31(6), 3749-3758.
Lin, T., Watson, S., Devesa, R., Bruchet, A., Burlingam, G., Dietrich, A., & Suffet, M. (2012). Off-flavours in the aquatic environment: a global issue. Global Trends & Challenges in Water Science, Research and Management–A compendium of hot topics and features from IWA Specialist Groups. International Water Association, London, UK, 58-63.
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods, 25(4), 402-408.
Lopez, C., Jewett, E., Dortch, Q., Walton, B., & Hudnell, H. (2008). Scientific assessment of freshwater harmful algal blooms.
Marbun, Y. R., Yen, H. K., Lin, T.-F., Lin, H. L., & Michinaka, A. (2012). Rapid on-site monitoring of cylindrospermopsin-producers in reservoirs using quantitative PCR. Sustainable Environment Research, 22(3), 143-151.
Martins, A., & Vasconcelos, V. (2011). Use of qPCR for the study of hepatotoxic cyanobacteria population dynamics. Archives of microbiology, 193(9), 615-627.
Matthijs, H. C., Visser, P. M., Reeze, B., Meeuse, J., Slot, P. C., Wijn, G., . . . Huisman, J. (2012). Selective suppression of harmful cyanobacteria in an entire lake with hydrogen peroxide. water research, 46(5), 1460-1472.
Mihali, T. K., Kellmann, R., Muenchhoff, J., Barrow, K. D., & Neilan, B. A. (2008). Characterization of the gene cluster responsible for cylindrospermopsin biosynthesis. Applied and Environmental Microbiology, 74(3), 716-722.
MOH. (2018). Drinking-water Standards for New Zealand 2005 (revised 2018). Wellington: Ministry of Health
Moisander, P., McClinton, E., & Paerl, H. W. (2002). Salinity effects on growth, photosynthetic parameters, and nitrogenase activity in estuarine planktonic cyanobacteria. Microbial ecology, 43(4), 432-442.
Mráz, M., Malinova, K., Mayer, J., & Pospisilova, S. (2009). MicroRNA isolation and stability in stored RNA samples. Biochemical and biophysical research communications, 390(1), 1-4.
Neilan, B. A., Pearson, L. A., Muenchhoff, J., Moffitt, M. C., & Dittmann, E. (2013). Environmental conditions that influence toxin biosynthesis in cyanobacteria. Environmental microbiology, 15(5), 1239-1253.
Newcombe, G., & Nicholson, B. (2004). Water treatment options for dissolved cyanotoxins. Journal of Water Supply: Research and Technology—AQUA, 53(4), 227-239.
NHMRC, & NRMMC. (2011). Australian Drinking Water Guidelines Paper 6 National Water Quality Management Strategy. Canberra
Nocker, A., Cheung, C.-Y., & Camper, A. K. (2006). Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. Journal of microbiological methods, 67(2), 310-320.
Nolan, T., Hands, R. E., & Bustin, S. A. (2006). Quantification of mRNA using real-time RT-PCR. Nature protocols, 1(3), 1559-1582.
Pearson, L., Mihali, T., Moffitt, M., Kellmann, R., & Neilan, B. (2010). On the chemistry, toxicology and genetics of the cyanobacterial toxins, microcystin, nodularin, saxitoxin and cylindrospermopsin. Marine drugs, 8(5), 1650-1680.
Pierangelini, M., Sinha, R., Willis, A., Burford, M. A., Orr, P. T., Beardall, J., & Neilan, B. A. (2015). Constitutive cylindrospermopsin pool size in Cylindrospermopsis raciborskii under different light and CO2 partial pressure conditions. Applied and Environmental Microbiology, 81(9), 3069-3076.
Plaas, H. E., & Paerl, H. W. (2020). Toxic Cyanobacteria: A Growing Threat to Water and Air Quality. Environmental Science & Technology.
Pouria, S., de Andrade, A., Barbosa, J., Cavalcanti, R., Barreto, V., Ward, C., . . . Codd, G. (1998). Fatal microcystin intoxication in haemodialysis unit in Caruaru, Brazil. The Lancet, 352(9121), 21-26.
Preußel, K., Chorus, I., & Fastner, J. (2014). Nitrogen limitation promotes accumulation and suppresses release of cylindrospermopsins in cells of Aphanizomenon sp. Toxins, 6(10), 2932-2947.
Qian, H., Yu, S., Sun, Z., Xie, X., Liu, W., & Fu, Z. (2010). Effects of copper sulfate, hydrogen peroxide and N-phenyl-2-naphthylamine on oxidative stress and the expression of genes involved photosynthesis and microcystin disposition in Microcystis aeruginosa. Aquatic Toxicology, 99(3), 405-412.
Rasmussen, J. P., Giglio, S., Monis, P., Campbell, R., & Saint, C. (2008). Development and field testing of a real‐time PCR assay for cylindrospermopsin‐producing cyanobacteria. Journal of Applied Microbiology, 104(5), 1503-1515.
Rastogi, R. P., Sinha, R. P., Moh, S. H., Lee, T. K., Kottuparambil, S., Kim, Y.-J., . . . Häder, D.-P. (2014). Ultraviolet radiation and cyanobacteria. Journal of Photochemistry and Photobiology B: Biology, 141, 154-169.
Ribeiro, M. S., Tucci, A., Matarazzo, M. P., Viana-Niero, C., & Nordi, C. S. (2020). Detection of Cyanotoxin-Producing Genes in a Eutrophic Reservoir (Billings Reservoir, São Paulo, Brazil). Water, 12(3), 903.
Rinta-Kanto, J. M., Konopko, E. A., DeBruyn, J. M., Bourbonniere, R. A., Boyer, G. L., & Wilhelm, S. W. (2009). Lake Erie Microcystis: relationship between microcystin production, dynamics of genotypes and environmental parameters in a large lake. Harmful algae, 8(5), 665-673.
Rio, D. C., Ares, M., Hannon, G. J., & Nilsen, T. W. (2010). Purification of RNA using TRIzol (TRI reagent). Cold Spring Harbor Protocols, 2010(6), pdb. prot5439.
Rocha, A. J., de Souza Miranda, R., Sousa, A. J. S., & da Silva, A. L. C. (2016). Guidelines for successful quantitative gene expression in real-time qPCR assays. Polymerase Chain Reaction for Biomedical Applications. InTech, 1-13.
Rodríguez, E., Onstad, G. D., Kull, T. P., Metcalf, J. S., Acero, J. L., & von Gunten, U. (2007). Oxidative elimination of cyanotoxins: comparison of ozone, chlorine, chlorine dioxide and permanganate. water research, 41(15), 3381-3393.
Rzymski, P., & Poniedziałek, B. (2014). In search of environmental role of cylindrospermopsin: A review on global distribution and ecology of its producers. water research, 66, 320-337.
Scarlett, K. R., Kim, S., Lovin, L. M., Chatterjee, S., Scott, J. T., & Brooks, B. W. (2020). Global scanning of cylindrospermopsin: Critical review and analysis of aquatic occurrence, bioaccumulation, toxicity and health hazards. Science of the Total Environment, 738, 139807.
Schembri, M. A., Neilan, B. A., & Saint, C. P. (2001). Identification of genes implicated in toxin production in the cyanobacterium Cylindrospermopsis raciborskii. Environmental Toxicology: An International Journal, 16(5), 413-421.
Sellers, R. M. (1980). Spectrophotometric determination of hydrogen peroxide using potassium titanium (IV) oxalate. Analyst, 105(1255), 950-954.
Sellner, K. G., Doucette, G. J., & Kirkpatrick, G. J. (2003). Harmful algal blooms: causes, impacts and detection. Journal of Industrial Microbiology and Biotechnology, 30(7), 383-406.
Shalev-Alon, G., Sukenik, A., Livnah, O., Schwarz, R., & Kaplan, A. (2002). A novel gene encoding amidinotransferase in the cylindrospermopsin producing cyanobacterium Aphanizomenon ovalisporum. FEMS microbiology letters, 209(1), 87-91.
Shi, H., Ding, J., Timmons, T., & Adams, C. (2012). pH effects on the adsorption of saxitoxin by powdered activated carbon. Harmful algae, 19, 61-67.
Sipari, H., Rantala-Ylinen, A., Jokela, J., Oksanen, I., & Sivonen, K. (2010). Development of a chip assay and quantitative PCR for detecting microcystin synthetase E gene expression. Applied and Environmental Microbiology, 76(12), 3797-3805.
Smith, B. A., Teel, A. L., & Watts, R. J. (2004). Identification of the reactive oxygen species responsible for carbon tetrachloride degradation in modified Fenton's systems. Environmental Science & Technology, 38(20), 5465-5469.
Song, W., Yan, S., Cooper, W. J., Dionysiou, D. D., & O’Shea, K. E. (2012). Hydroxyl radical oxidation of cylindrospermopsin (cyanobacterial toxin) and its role in the photochemical transformation. Environmental Science & Technology, 46(22), 12608-12615.
Stucken, K., John, U., Cembella, A., Soto-Liebe, K., & Vásquez, M. (2014). Impact of nitrogen sources on gene expression and toxin production in the diazotroph Cylindrospermopsis raciborskii CS-505 and non-diazotroph Raphidiopsis brookii D9. Toxins, 6(6), 1896-1915.
Tanabe, Y., Kaya, K., & Watanabe, M. M. (2004). Evidence for Recombination in the Microcystin Synthetase (mcy) Genes ofToxic Cyanobacteria Microcystisspp. Journal of molecular evolution, 58(6), 633-641.
Thraenhart, P. D. O., & Jursch, C. DNA/RNA Shield™.
Tonk, L., Bosch, K., Visser, P. M., & Huisman, J. (2007). Salt tolerance of the harmful cyanobacterium Microcystis aeruginosa. Aquatic Microbial Ecology, 46(2), 117-123.
USEPA. (2014). Cyanobacteria and Cyanotoxins: Information for Drinking Water Systems. Retrieved from https://www.epa.gov/sites/production/files/2014-08/documents/cyanobacteria_factsheet.pdf
USEPA. (2015). Drinking Water Health Advisory for the Cyanobacterial Toxin Cylindrospermopsin. Retrieved from https://19january2017snapshot.epa.gov/sites/production/files/2015-06/documents/cylindrospermopsin-report-2015.pdf
Van Apeldoorn, M. E., Van Egmond, H. P., Speijers, G. J., & Bakker, G. J. (2007). Toxins of cyanobacteria. Molecular nutrition & food research, 51(1), 7-60.
Wan, Y., Xie, P., Wang, Z., Ding, J., Wang, J., Wang, S., & Wiesner, M. R. (2019). Comparative study on the pretreatment of algae-laden water by UV/persulfate, UV/chlorine, and UV/H2O2: Variation of characteristics and alleviation of ultrafiltration membrane fouling. water research, 158, 213-226.
Westrick, J. A., Szlag, D. C., Southwell, B. J., & Sinclair, J. (2010). A review of cyanobacteria and cyanotoxins removal/inactivation in drinking water treatment. Analytical and bioanalytical chemistry, 397(5), 1705-1714.
Wilfinger, W. W., Mackey, K., & Chomczynski, P. (1997). Effect of pH and ionic strength on the spectrophotometric assessment of nucleic acid purity. Biotechniques, 22(3), 474-481.
Wilson, K. M., Schembri, M. A., Baker, P. D., & Saint, C. P. (2000). Molecular characterization of the toxic cyanobacterium Cylindrospermopsis raciborskii and design of a species-specific PCR. Applied and Environmental Microbiology, 66(1), 332-338.
Yang, Y., Jiang, Y., Li, X., Li, H., Chen, Y., Xie, J., . . . Li, R. (2017). Variations of growth and toxin yield in Cylindrospermopsis raciborskii under different phosphorus concentrations. Toxins, 9(1), 13.
Yang, Z., Buley, R. P., Fernandez-Figueroa, E. G., Barros, M. U., Rajendran, S., & Wilson, A. E. (2018). Hydrogen peroxide treatment promotes chlorophytes over toxic cyanobacteria in a hyper-eutrophic aquaculture pond. Environmental Pollution, 240, 590-598.
Yoshida, M., Yoshida, T., Takashima, Y., Hosoda, N., & Hiroishi, S. (2007). Dynamics of microcystin-producing and non-microcystin-producing Microcystis populations is correlated with nitrate concentration in a Japanese lake. FEMS microbiology letters, 266(1), 49-53.
Zacharias, N., Kistemann, T., & Schreiber, C. (2015). Application of flow cytometry and PMA-qPCR to distinguish between membrane intact and membrane compromised bacteria cells in an aquatic milieu. International Journal of Hygiene and Environmental Health, 218(8), 714-722.
Zhang, S., Shao, T., & Karanfil, T. (2011). The effects of dissolved natural organic matter on the adsorption of synthetic organic chemicals by activated carbons and carbon nanotubes. water research, 45(3), 1378-1386.
Zhou, Q., Li, L., Huang, L., Guo, L., & Song, L. (2018). Combining hydrogen peroxide addition with sunlight regulation to control algal blooms. Environmental Science and Pollution Research, 25(3), 2239-2247.
行政院環保署環境檢驗所. (2011). 水中微囊藻毒及節球藻毒篩檢方法-盤式或條式直接競爭型酵素免疫分析法 (NIEA E510.50B). Retrieved from https://www.epa.gov.tw/niea/844BCC8A6037B808
呂宛慈. (2019). 天然混凝劑作為緊急藻華問題處理之應用評估. 成功大學環境工程學系學位論文, 1-110.
洪翊綾. (2020). 柱孢藻在生長及加氯氧化下毒素生成及基因表現變化之研究. 成功大學環境工程學系學位論文, 1-103.
游惇蓉. (2014). 過氧化氫在光催化系統下對魚腥藻之破壞及其代謝物釋出降解之研究.