| 研究生: |
藍詠翔 Lan, Yung-Hsiang |
|---|---|
| 論文名稱: |
瓷金結構a-C:H/Pt用於選擇性太陽吸收膜之研究 Cermet Structured a-C:H/Pt Thin Films for Using as Selective Solar Absorber Coatings |
| 指導教授: |
丁志明
Ting, Jyh-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 反應式磁控共濺鍍 、鉑金屬含氫非晶碳薄膜 、瓷金結構 、選擇性太陽吸收膜 |
| 外文關鍵詞: | Reactive magnetron co-sputtering, Cermet structure, Selective solar absorber, Platinum containing hydrogenated amorphous carbo |
| 相關次數: | 點閱:67 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要為研究以反應式磁控共濺鍍方法,製備雙層瓷金鉑金屬含氫非晶碳(a-C:H/Pt)結構之選擇性太陽吸收膜,其中探討濺鍍時通入不同甲烷流量以及濺鍍功率對於材料結構所造成的變化,並且由退火過後的表面型態以及材料結構當中,了解退火對於材料光學吸收率所造成的影響。本研究分為三個部份,前兩部份為分別對於單層a-C:H以及a-C:H/Pt薄膜進行特性分析。第三部份則以常溫下最佳化吸收率下製備的選擇性吸收膜退火並且進行特性分析。
本文第一部份以碳靶材於濺鍍時通入甲烷得到a-C:H薄膜,實驗結果利用UV/VIS/NIR光譜儀得到a-C:H之穿透率以及光學能隙,並且由拉曼(Raman)光譜了解材料於退火後結構之變化,研究中發現退火後碳之結構中部份sp3鍵結轉變成sp2鍵結,並且造成光學能隙減低。第二部份則對不同濺鍍功率及甲烷流量下所得到a-C:H/Pt薄膜之結構進行特性分析,並且探討單層薄膜於退火後材料之特性變化。我們藉由X光繞射儀(XRD)以及拉曼光譜分別對a-C:H/Pt中的鉑以及含氫非晶碳進行微結構分析,場發射型掃描式電子顯微鏡(SEM)以及原子力顯微鏡(AFM)進行表面型態的觀察,X光光電子能譜儀(XPS)進行薄膜成份以及化學鍵結的分析。研究中發現含有鉑金屬的非晶碳薄同樣會於熱處理過後得到較多的sp2鍵結,並且於較高金屬含量的薄膜於退火之後產生微裂縫,而造成於吸收率上不同金屬含量於退火後具有不同的結果。
本文第三部份則以常溫下多層結構所得到最佳化之參數進行熱處理,實驗中顯示於高金屬層及低金屬層分別使用110/60瓦的濺鍍功率可以得到最高的吸收率,因此我們以縱深XPS以及二次離子質譜儀(SIMS)了解此條件下退火處理之後元素的擴散效應,並且於穿透式電子顯微鏡(TEM)下觀察材料微結構,研究中顯示選擇基板的差異會對整個選擇性吸收膜的穩定性造成影響,並且造成光學吸收率上的改變。
Platinum containing amorphous hydrogenated carbon (a-C:H/Pt) selective solar absorber coating exhibiting a double cermet structure were fabricated using a reactive magnetron co-sputter deposition process. The effect of various methane concentration and power on the microstructure were studied. And we analysed the effect of annealing on the optical absorptance from its morphology and microstructure. We separate three parts in the thesis. The characteristic of single layer a-C:H and a-C:H/Pt film was analysed in the former two parts. And the last part we annealed the sample which have the optimum parameter to analyse the characteristic.
The first part in the thesis, the methane was flowed into the chamber to sputter with carbon target to get the a-C:H film. We used UV/VIS/NIR spectrophotometry to measure the transmittance of a-C:H and calculated its optical gap and used raman spectral to realize the difference of the structure after annealing. It is apparent that the sp3 ratio and the optical gap decrease after annealing. The Second part we analysed the characteristic of a-C:H/Pt film from various sputter power and methane concentration, and investigating the difference after annealing. From XRD and Raman spectral to analysis the structure of platinum and carbon, respectively. SEM and AFM were used to observe the morphology, and the chemical bonding state on the surface were investigated using XPS. It was found that the metal platinum embed in the amorphous carbon also provide higher sp2 ratio and films possess higher metal concentration was easily to produce the microcracks after annealing, leading to the different results in the optical properties from the various metal concentration.
In the third part, we annealing the multilayer structure respectively using 110/60 W for high metal layer and low metal layer which have the optimum absorptance in the room temperature. XPS and SIMS depth profile were used to understand the diffusion effect after annealing, and to observe the microsture from TEM. It has found that the using of Cu substrate would affect the thermal stability, and change the optical absorptance
[1]Tabor H., Selective radiation, Bulletin Research Council of Isreal, 5A 119 (1956)
[2]G. A. Niklasson, C. G. Granqvist, J. Mat. Science 18 (1983) 3475
[3]G. E. McDonald and H. B. Curtis Technol. Rep. TMX-71731, NASA
[4]W. F. Bogaerts and C. M. Lampert, J. Mat. Sci. 18 (1983) 2847
[5]H. Tabor, in Trans. Conf. Use of Solar Energy, Tucson, AZ, 1955, E. F. Carpenter, Ed. (Univ. of Arizona Press, Tucson, AZ, 1955), Vol. 2, Part 1, Sec. A, p.1.
[6]G. E. McDonald and H. B. Curtis, Techn. Rept. No. NASA-TMX-73498 (1976)
[7]R. Karmhag, T. Tesfamichael, E. Wackelgard, Sol. Energy 68 (2000) 329
[8]I. T. Ritchie, B. Window, Appl. Opt. 06 (1977) 1438.
[9]M. Lanxner, Z. Elgat, Proc. SPIE 1272 (1990) 240
[10]Q. C. Zhang, J. Phys. D 31 (1998) 355
[11]P. Richharia and K. L. Chopra, Solar Energy Mater. 19 (1989) 365
[12]S. Süzer, F. Kadirgan, H. M. Söhmen, A. J. Wetherilt, and İ. E. Türe, Solar Energy Mater. & Solar Cells 52 (1998) 55
[13]T. Tesfamichael and E. Wäckelgård, Solar Energy Mater. 51 (1998) 171
[14]T. S. Sathiaraj, R. Thangarj, A. A. Sharbaty, M. Bhatnagar, and O. P. Agnihotri, Thin Solid Films 190 (1990) 241
[15]M. Lanxner and Z. Elgat, Proc. Photo-Opt. Instrum. Engr. 1272 (1990) 240
[16]A. Avila G., E. Barrera C., L. Huerta A., S. Muhl, Sol. Energy Mater. Sol. Cells 82 (2004) 269
[17]T. Bostrom, E. Wackelgard, G. Westin, Sol. Energy 74 (2003) 497
[18]Z. C. Orel, M. K. Gunde, Sol. Energy Mater. Sol. Cells 68 (2001) 337
[19] Á. Morales and J. I. Ajona, J. Phys, Ⅳ France 9 (1999) 513
[20]J. C. C. Fan and P. M. Zavraky, App. Phys. Lett. 29 (1977) 478; J. C. C. Fan, U.S. Patent No. 4,442,166, 10 April 1984
[21]M. Koltun, G. Gukhman, and A. Gavrilina, Sol. Energy Mater. Sol. Cells 33 (1994) 41
[22]E. Wäckelgård, SEM 56 (1998) 35
[23]F. Milde, M. Dimer, P. Gantenbein, C. Hecht, D. Pavic, and D. Schulze, Industrial scale manufacture of solar absorbent multilayers by MF-pulsed plasma technology, Proceedings of the 1999 42nd Annual Technical Conference, (Soc. Vacuum Coaters, Albuquerque, NM, 1999) p. 163
[24]A. Schüle, J. Geng, P. Oelhafen, S. Brunold, P. Gantenbein, and U. Frei, Solar Energy Mater. & Solar Cells 60 (2000) 295
[25]G. L. Harding and B. Window, J. Vac. Sci. Technol. 16 (1979) 6
[26]R. J. Farrauto, J. C. Williams, and H. Myers, U.S. Patent 4,321,300, 23 March 1982
[27]張志純, 太陽能之理論及應用, 徐氏基金會出版 (1979)
[28]A. L. Fahrenbruch, R. H. Bube, Fundamentals of Solar Cells, Academic Press (1983) p.541
[29]F. E. Fowle, Astrophys. J., 42 (1915) 379
[30]C. E. Kennedy, Review of Mid- to High- Temperature Solar Selective Absorber Materials, NREL (2002)
[31]R. E. Peterson and J. W. Ramsey, J. Vac. Sci. Technol. 12 (1975) 174
[32]Cédric Philibert, The present and future use of soalr thermal energy as a primary source of energy, (2005)
[33]B. O. Seraphin, Solar energy conversion: Solid-state physics aspects, Springer (1979)
[34]J. H. Schon, E. Bucher, Solar Energy Mat. and Solar Celss 43 (1996) 59
[35]C. G. Granqvist, Spectrally Selective Surfaces for Heating and Cooling Applications, SPIE Opt. Engr. Press (1989)
[36]Q. C. Zhang and D. R. Mills, J. Appl. Phys., 72 (1992) 3013
[37]B. Popescu, C. Verney, E. A. Davis, V. Paret, A. Brunet-Bruneau, J. of Non-crystalline Solids 266 (2000) 778
[38]C. A. Arancibia-Bulnes, C. A. Estrada, and J. C. Ruiz-Su árez, J. Phys. D: Appl. Phys. 33 (2000) 5789
[39]J. Robertson, Materials Science and Engineering: Report 37 (2002) 129
[40]J. Robertson, Prog. Solid State Chem. 21 (1991) 199
[41]J. Robertson, E.P. O’Reilly, Phys. Rev. B 35 (1987) 2946
[42]J. Robertson, Mater. Sci. Forum 52 (1990) 125
[43]李浩榮, Pt/C薄膜特性之研究, 國立成功大學材料所 (2001)
[44]J. C. Maxwell Garnett, Philos, Trans. R. Soc. 20 (1904) 385
[45]D. A. G. Bruggeman, Ann. Phys. (Leipzig) 24 (1935) 635
[46] S. L. Storm, Labsphere application Note, No. 2, 1 (1998)
[47]Y. Bounouh and M. K. Theye, physical review B 51 (1995) 9597
[48]J. Schwan, S. Ulrich, V. Batori, and H. Ehrhardt, J. Appl. Phys. 80 (1996) 440
[49]J. Tauc, R. Grigorovici, and A. Vancu, Phys. Status Solidi 15 (1966) 627
[50]D. Jiles, Introduction to the electronic properties of materials, Chapman and Hall (1994)
[51]A. C. Ferrari and J. Robertson, physical review B 61 (2000) 14095
[52]M. A. Tamor and W. C. Vassel, J. Appl. Phys. 76 (1994) 3823
[53]I. Safi, Surface and Coating Technology 127 (2000) 203
[54]吳宛玉, 具自我組裝交替奈米層狀結構之含金屬非晶碳薄膜:從隨機結構到自我組裝交替層狀結構, 國立成功大學材料所 (2008)
[55]B. Chapman, Glow Discharge Processes, John Wiley & Sons. Inc. (1980)
[56]W. D. Westwood, J. Vac. Sci. Techl. 15 (1978) 1
[57]G. L. Selman, P. J. Ellison, A. S. Darling, M. I. Mech. E., platinum Metal Rev. 14 (1970) 14
[58]B. D. Cullity, S. R. Stock, “Elements of X-ray diffraction, Addison-Wesley Pub. Co. (1978)
[59]L. Calliari, M. Filippi, G. Gottardi, N. Laidani and M. Anderle, Surface and Interface analysis 38 (2006) 761
[60]J. Prabhuram, X. Wang, C. L. Hui, and I-Ming Hsing, J. Phys. Chem. B 107 (2003) 11057
[61]A. K. Shukla, M. Neergat, P. Bera, V. Jayaram, S. M. Hegde, J. Electroanal. Chem. 504 (2001) 111
[62]A. S. Arico, P. Creti, E. Modica, G. Monforte, V. Baglio, V. Antonucci, Electrochim. Acta 45 (2000) 4319
[63]J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, Handbook of X-ray Photoelectron, Physical Electronics (1995)
[64]M. L. Toebes, Y. Zhang, J. Hajek, T. A. Nijhuis, J. H. Bitter, A. J. van D., D. Y. Murzin, D. C. Koningsberger, K. P. de Jong, J. catalysis 226 (2004) 215
[65]F. A. de Brujia, Surface and Interface analysis 19 (1992) 537
[66]H. C. Barshilia, N. Selvakumar, K. S. Rajam, A. Biswas, Solar Energy Materials & Solar Cells 92 (2008) 495
[67]F. W. Smith, J. Appl. Phys. 55 (1984) 764
[68]Palik, Edward D. , Handbook of optical constants of solids, Academic Press (1985)
[69]Shuxi Zhao, Spectrally Selective Solar Absorbing Coatings Prepared by dc Magnetron Sputtering, Uppsala University (2007)
[70]L. E. Murillo, Growth Kinetics of Gold Nanoparticles
[71]Mark Fox, Optical Properties of solids, Oxford University Press (2001) p.3
[72]Harish C. Barshilia, N. Selvakumar, J. Appl. Phys. 103 (2008) 023507
[73]史月艷, 那鴻悅, 太陽光譜選擇性吸收膜系設計、製備及測評, 清華大學出版社 (2009)
[74]Q. C. Zhang, Y. Yin, and D. R. Mills, Solar Energy Mater. & Solar Cells 40 (1996) 43
[75]H. A. Macleod, J. Vac. Sci. Technol. A. Vac. Surf. Films 4 (1986) 418