| 研究生: |
吳翰林 Wu, Han-Lin |
|---|---|
| 論文名稱: |
氣提法數學模式之研究 A Mathematical Model Study for Air Sparging |
| 指導教授: |
郭明錦
Kuo, Min-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 揮發性有機物 、地下水 、氣體通道 、氣提法 |
| 外文關鍵詞: | Air Channel, Air Sparging, Groundwater, VOCs |
| 相關次數: | 點閱:50 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
針對台灣地下水常見之揮發性有機污染物,氣提法是一種實用的整治技術。本論文使用氣體通道數學模式,以甲苯為例,了解氣提法對地下水甲苯污染物之移除效率。
本論文氣提法數學模式研究發現,甲苯移除效率隨著注氣流量及氣體飽和度的上升而增加。
In-situ air sparging is a widely used remedial technique to remove volatile organic compounds (VOCs) from groundwater. Using toluene as an example, this study applied the air channel model to understand the toluene removal efficiency through in-situ sparging.
The toluene removal efficiency increase as the air flow rate and the air saturation increase.
1. 陳逸,“輕非水相液體水充排實驗之研究”,成功大學資源工程研究所碩士論文。2006。
2. 蔡易縉,“氣提法地下水整治氣體流動路徑之研究-示蹤技術之應用”,成功大學資源工程研究所博士論文。2001
3. Ahlfeld, D., Dahmani, A., and Ji, W., A conceptual model of field behavior of air sparging and its implications for application. Groundwater Monitoring and Remediation, Fall, 132–139., 1994.
4. Acomb, L., McKay, D., Currier, P., Berglund, S., Sherhart, T., and Benediktsson, C., Neutron probe measurements of air saturation near an air sparging well. In situ aeration: Air sparging, bioventing and related remediation processes, R. Hinchee, R. Miller, and P. Johnson, eds., Battelle, Columbus, Ohio, 47–61, 1995.
5. Brown, R. A., Hicks, R. J., and Hicks, P. M., “Use of Air Sparging for In Situ Bioremediation. In Air Sparging for Site Remediation”, Hinchee, R.E., Eds., Lewis Publishers, Boca Raton, FL., pp. 38-55, 1994.
6. Braida, W., and Ong, S. K., “Modeling of Air Sparging of VOC-contaminated Soil Columns”, Journal of Contaminant Hydrology, v. 41, pp. 385-402, 2000.
7. Bird, R., Stewart, W., and Lightfoot, E., Transport phenomena. Wiley, New York. 1960.
8. Beggs, H. D., Gas production operations. Oil & gas consultants international, inc, 1984.
9. Elder, C., Benson, C, and Eykholt, G., Modeling mass removal during in situ air sparging. J. Geotechnical and Geoenvironmental Engineering 125 (11), 947-958, 1999.
10. Elder, C., and Benson, C., Air channel formation, size, spacing, and tortuosity during in situ air sparging. Groundwater Monitoring and Remediation 65 (3), 171-181, 1999.
11. Johnson, P. C., Das, A., and Bruce, C., “Effect of Flow Rate Changes and Pulsing on the Treatment of Source Zones by in Situ Air Sparging”, Environmental Science & Technology, v. 33, n. 10, pp. 1726-1731, 1999.
12. Johnson, C. D.,Rayner, J. L., Patterson, B. M., and Davis G. B., “Volatilization and Biodegradation during Air Sparging of Dissolved BTEX-contaminated Groundwater”, Journal of Contaminant Hydrology, v. 33, pp. 377-404, 1998.
13. Ji, W., Dahmani, A., Ahlfeld, D. P., Lin J. D., and Hill III, E. H., “Laboratory Study of Air Sparging: Air Flow Visualization”, Ground Water Monitoring & Remediation, v. 13, n. 4, pp. 115-126, 1993.
14. Kuo, M.C.T., Chen, C.M., Lin, C.H., Fang, H.C., Lee, C.H., Surveys of volatile organic compounds in soil and groundwater at industrial sites in Taiwan. Bull. Environ.Contam. Toxicol. 65, 654–659, 2000.
15. M.C. Marley, C.J. Bruell, H.H. Hopkins, Air sparging technology: A practice update, In: R.E. Hinchee, R.N. Miller, P.C. Johnson (Eds.), In Situ Aeration: Air Sparging, Bioventing, and Related Remediation Processes, Battelle Press, Columbus, OH, 1995, pp. 31–38,1995.
16. Murray, W. A., Lunardini, Jr. R. C., Ullo, Jr. F. J., and Davidson, M. E., “Site 5 Air Sparging Pilot Test, Naval Air Station Cecil Field, Jacksonville, Florida”, Journal of Hazardous Materials, v. 72, pp. 121-145, 2000.
17. McCabe, W. A., and Smith J. C., Unit operations of chemical engineering. McGraw-Hill, inc, 1976.
18. Mackay, D., and Shiu, W. Y., A critical review of Henry’s law constants for chemicals of environmental interest. J. Phys. Chem. Ref. Data 10 (4), 1175-1199, 1981.
19. McCabe, W. A., and Smith J. C., Unit operations of chemical engineering. McGraw-Hill, inc, 1976.
20. McKay, D., and Acomb, L., ‘‘Neutron moisture probe measurements of fluid displacement during in situ air sparging.’’ Groundwater Monitoring and Remediation, 16(4), 86–94, 1996.
21. Perry, R.H., and Chilton, S.C., Chemical Engineers’ Handbook, 5th
Edition, Int. Stud. Edition. McGraw-Hill Kogakusha Ltd., Auckland, 1973.
22. Peterson, J. W., DeBoer, M. J., and Lake, K. L., A laboratory simulation of toluene cleanup by air sparging of water-saturated sands. J. Hazard. Mater. 72, 167 – 178, 2000.
23. Peterson, J. W., Lepczyk, P. A., and Lake, K. L., “Effect of Sediment Size on Area of Influence during Groundwater Remediation by Air Sparging: A Laboratory Approach”, Environmental Geology, v. 38, n. 1, pp. 1-6, 1999.
24. Skelland, A., Diffusional mass transfer. Wiley, New York, 1974.
25. Treybal, R. E., Mass-transfer operations. McGraw-Hill, inc, 1980.