| 研究生: |
王詮文 Wang, Chuan-Wen |
|---|---|
| 論文名稱: |
駁船式浮動風機近全尺度水工及實海域試驗研究 Near Full-scale Hydraulic Experiments and Field Tests of Barge-type Floating Wind Turbine System |
| 指導教授: |
楊瑞源
Yang, Ray-Yeng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 浮式風機 、駁船式 、模型試驗 、垂盪板 、阻尼池 |
| 外文關鍵詞: | floating wind turbine, barge type platform, field test, model test, heave plate, damping pool |
| 相關次數: | 點閱:132 下載:40 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前我國政府正在大力推動離岸風電之發展,將積極開發綠色新能源,然而我國擁有豐富的沉箱製作技術經驗以及完整且優良的海事工程團隊,對於外觀構造十分類似的駁船式浮式平台相較於他國具有明顯優勢,另外浮式風機可以先在港口進行風機組裝並使用拖船運送至目標場址進行安裝,風機故障時亦可一同拖回港邊進行維修,大幅降低在海上安裝及拆除之危險性,且西部海域是世界公認優良風場之一,其水深大約是在50~100公尺之間,駁船式平台吃水深度相對淺的特性相當適合我國海域;但也是駁船式平台吃水深較淺的特性使得平台在較極端波浪條件下穩定性及安全性會受到質疑,故本研究會利用阻尼池以及垂盪板兩項阻尼機制來因應較極端的海況條件。
本研究先透過數值模擬進行自由衰減試驗了解浮式平台自身特性,以及進行我國首次以近全尺度1/20模型縮尺於實海域測試浮動式風機,其中不單只是探討浮台水動力影響,亦結合了風機系統的氣動力學、繫泊系統的繫纜動態影響以及實際安裝拖錨的錨固力學;整機於安平商港測試階段經歷現場最大風速達12.3m/s換算回去足以代表原型風速55m/s此時整機穩定性十分良好,另外考慮安平商港內部波浪周期較短,另於成大水工試驗所大型斷面水槽進行水槽試驗,試次含括我國各個主要海況週期之規則波試次,以及不規則波試次包含:常態海況、東北季風海況、十年回歸期以及五十年回歸期,而水槽試驗中駁船式浮動風機在我國各個海況條件下均有良好穩定性,繫泊系統張力分析亦屬合理安全設計;綜觀以上可發現搭載阻尼池以及垂盪板之平台可以有效降低在起伏運動以及平台轉動之運動振幅,使浮式平台穩定性提升並且符合國際規範。
本研究同時兼顧了新綠能開發也促進了我國在離岸浮動風機發展的進步,讓我國在開發綠色能源的里程中大大邁進一步。
At present, the government is vigorously promoting the development of offshore wind power, and will actively develop green new energy, because we have rich experience in caisson production technology and a complete and excellent offshore engineering team. We are superior to other countries in making barge-type floating platforms with similar appearance and structure. However, the floating wind turbine can be assembled at the port and transported by the tugboat to the target location for installation. When a fault occurs, it can be towed back to the port for maintenance, which greatly reduces the risk of offshore installation and disassembly. However, the western waters are recognized as one of the best wind farms in the world, where the water depth is between 50 and 100 meters. The barge-type platform has a shallow draft and is more suitable for western waters, but this is also the feature of the barge-type platform's shallow draft. The stability and safety of the barge-type platform in more extreme wave conditions will be questioned. Therefore, this study will adopt two damping mechanisms, the damping pool and the heave plate, to deal with more extreme sea conditions.
[1] American Bureau of Shipping. (2017). OFFSHORE MOORING CHAIN.
[2] American Bureau of Shipping. (2018). POSITION MOORING SYSTEMS.
[3] Chuang, T.-C., Yang, W.-H., & Yang, R.-Y. (2021). Experimental and numerical study of a barge-type FOWT platform under wind and wave load. Ocean Engineering, 230, 109015.
[4] Coulling, A. J., Goupee, A. J., Robertson, A. N., Jonkman, J. M., & Dagher, H. J. (2013). Validation of a FAST semi-submersible floating wind turbine numerical model with DeepCwind test data. Journal of Renewable and Sustainable Energy, 5(2), 023116.
[5] Delpeche, K. (2019). Applicability of a Toroidal Hull Structure for Floating Wind. The 29th International Ocean and Polar Engineering Conference,
[6] DNV. (2014). Storage and Loading Units.
[7] DNV. (2015). OFFSHORE STANDARD DNV GL AS Position Mooring.
[8] DNV. (2018). Offshore mooring chain.
[9] DNV. (2019). Coupled analysis of floating wind turbines.
[10] Frandsen, J. B. (2004). Sloshing motions in excited tanks. Journal of computational physics, 196(1), 53-87.
[11] Homma, R., Inoue, T., Okawa, T., Kayamori, Y., Shishibori, A., & Nishimura, S. (2015). Steel plates and fatigue solution for offshore wind turbines in the fukushima floating offshore wind farm demonstration project. Nippon Steel & Sumitomo Metal Technical, 110, 50-57.
[12] Hopstad, A. L. H., Argyriadis, K., Manjock, A., Goldsmith, J., & Ronold, K. O. (2018). DNV GL Standard for Floating Wind Turbines. ASME 2018 1st International Offshore Wind Technical Conference,
[13] James, R., & Ros, M. C. (2015). Floating offshore wind: market and technology review. The Carbon Trust, 439.
[14] Pham, H.-D., Cartraud, P., Schoefs, F., Soulard, T., & Berhault, C. (2019). Dynamic modeling of nylon mooring lines for a floating wind turbine. Applied Ocean Research, 87, 1-8.
[15] Ramsay, C. G., Bolsover, A. J., Jones, R. H., & Medland, W. G. (1994). Quantitative risk assessment applied to offshore process installations. Challenges after the piper alpha disaster. Journal of loss prevention in the process industries, 7(4), 317-330.
[16] Robertson, A., Jonkman, J., Wendt, F., Goupee, A., & Dagher, H. (2016). Definition of the OC5 DeepCwind semisubmersible floating system. Technical report.
[17] Saeki, M., Tobinaga, I., Sugino, J., & Shiraishi, T. (2014). Development of 5-MW Offshore Wind Turbine and 2-MW Floating Offshore Wind Turbine Technology. Hitachi Review, 63(7), 414.
[18] Shimada, K., Shiroeda, T., Hotta, H., van Phuc, P., & Kida, T. (2018). AN EMPIRICAL DESIGN FORMULA OF A SHARED PILE ANCHOR FOR A FLOATING OFFSHORE WIND TURBINE. Grand Renewable Energy proceedings Japan council for Renewable Energy (2018),
[19] Shin, H. (2011). Model test of the OC3-Hywind floating offshore wind turbine. The Twenty-first International Offshore and Polar Engineering Conference,
[20] Solberg, T. (2011). Dynamic response analysis of a spar type floating wind turbine Norges teknisk-naturvitenskapelige universitet, Fakultet for …].
[21] Standard, O. (2008). Position Mooring. DNV, OS-E301.
[22] Utsunomiya, T., Matsukuma, H., Minoura, S., Ko, K., Hamamura, H., Kobayashi, O., Sato, I., Nomoto, Y., & Yasui, K. (2013). At sea experiment of a hybrid spar for floating offshore wind turbine using 1/10-scale model. Journal of Offshore Mechanics and Arctic Engineering, 135(3).
[23] Uzunoglu, E., Karmakar, D., & Soares, C. G. (2016). Floating offshore wind platforms. In Floating offshore wind farms (pp. 53-76). Springer.
[24] Viselli, A. M., Goupee, A. J., & Dagher, H. J. (2015). Model test of a 1: 8-scale floating wind turbine offshore in the gulf of maine. Journal of Offshore Mechanics and Arctic Engineering, 137(4).
[25] Yang, Z., Lu, Q., Yan, J., Chen, J., & Yue, Q. (2018). Multidisciplinary optimization design for the section layout of umbilicals based on intelligent algorithm. Journal of Offshore Mechanics and Arctic Engineering, 140(3).
[26] Yuan-Hung, K., & Bo-Siou, W. (2015). Suction Pile Allowable Suction Pressure Envelopes Based on Soil Failure and Structural Buckling. Offshore Technology Conference,
[27] Yue, C.-D., & Yang, M.-H. (2009). Exploring the potential of wind energy for a coastal state. Energy Policy, 37(10), 3925-3940.
[28] 石丽娜. (2011). 基于 AQWA 的大型浮体拖航性能研究 大连理工大学.
[29] 石原孟, 山口敦, & 滝滋. (2014). 世界初の浮体式洋上風力ウィンドファームへの挑戦. 風力エネルギー利用シンポジウム, 36, 493-496.
[30] 王涌, 韩东, 苑志江, & 蒋晓刚. (2019). 锚泊安全视域下的锚链振动特征检测实验研究. 收藏, 10.
[31] 李懿蛟. (2020). 新型阶梯式浅吃水单立柱浮式风机平台水动力分析. 海洋工程装备与技术, 7(1), 35.