簡易檢索 / 詳目顯示

研究生: 江照勇
Chiang, Jaw-Yeong
論文名稱: 應用灰預測在熱傳逆問題之研究
Application of Grey Prediction to Inverse Heat Transfer Problems
指導教授: 陳朝光
Chen, Cha`o-Kuang
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 132
中文關鍵詞: 量測誤差灰預測逆解法熱傳逆問題
外文關鍵詞: IHTP, Inverse Method, Measurement Error, Grey Prediction
相關次數: 點閱:123下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究應用灰色系統理論之灰預測方法(Grey Prediction Method)來改善逆向矩陣法(Reversed Matrix Method)於分析熱傳逆問題(Inverse Heat Transfer Problems, IHTP)時,因溫度量測誤差所衍生的逆算誤差問題。
    於分析熱傳逆問題,本文採用逆向矩陣法配合線性最小均方根誤差法(Linear Least-squares Error Method)來建構一線性逆模型。以有限差分法將欲求解之熱傳逆問題統御方程式離散化(Discretization)建構一線性矩陣方程式。藉由重新排列矩陣方程式,使得未知條件(如初始條件、邊界條件、熱物性或幾何形狀等)能以獨立明確地表示出來;再以少量的溫度量測點數代入此線性逆模型中,利用線性最小均方根誤差法求得其解。
    於逆解過程中只需量取少量溫度即可推算出熱傳逆問題之解,但是在實際量測溫度時,必定會產生不可避免的溫度量測誤差。此量測誤差將會影響逆解運算估計值的準確度,甚至會導致錯誤的結果。其改善方式之一為增加溫度量測點數,當然若要得到更準確的逆算結果其所需要增加的量測點數也就要越多。因此本文引用灰預測方法來嘗試改善此缺點,以期能大量的減少實際溫度量測的點數,也同樣能獲得準確的逆算結果。
    灰預測方法可以把少量的直接量測溫度(通常只要數點即可)擴增到較多的溫度點數,而且這些擴增點的溫度仍然保有先前直接量測溫度的關聯性。用這些擴增的溫度點數即可取代逆解運算所需要增加的溫度點數,以達到改善因溫度量測誤差所造成的逆算結果錯誤。換句話說,灰預測方法可以使實際溫度量測點數大量的減少,一樣能夠達到原有使用大量直接量測溫度逆算結果的準確度。

    This article applies Grey Prediction Method of Grey System Theory to improve the problem of errors in inverse operation due to the error of temperature measurement when analyze Inverse Heat Transfer Problems (IHTP) with Reversed Matrix Method.
    For IHTP, this research adopted Revered Matrix Method with Linear Least-squares Error Method to construct a linear inverse model. With finite difference method, we discretized governing equation that is designed to solve IHTP to construct a linear matrix equation. Through the re-arrangement of matrix equation, the unknown conditions (such as initial conditions, boundary conditions, thermal property or geometrical shape) could be demonstrated clearly and independently. Then substitute a small amount of successive measuring points temperature into the linear inverse model and solve the problems by Linear Least-squares Error Method.
    The process of inverse operation only need to measure a small amount points temperature to estimate the solution of IHTP, but in practical measurement of temperature, the errors of measurement of temperature are inevitable. Such errors will affect the accuracy of estimation value of inverse operation or even lead to an erroneous results. One of improvement method is to increase the number of temperature measurement points. Certainly, more accurate results of inverse operation we want to obtain, the number of measurement points we should increase. Therefore, this research uses the Grey Prediction Method to improve the defect with a hope that significant reduction of the number of practical temperature measurement points could also obtain the same accurate results of inverse operation.
    The small amount of direct temperature measurement points can increase to more amount of temperature points by Grey Prediction Method, and the temperatures of those increased points could still keep the correlations with previous temperatures from direct measurement. The increased number of temperature points could replace the number of temperature points that is necessary to increase for inverse operation. In other words, Grey Prediction Method could significantly reduce the number of practical temperature measurement points while keep the same accuracy as the results of inverse operation using a great number of direct temperature measurement points.

    目 錄 中文摘要 .................................................................................................. I 英文摘要 ................................................................................................ II 誌謝 ....................................................................................................... IV 目錄 ........................................................................................................ V 圖目錄 ................................................................................................ VIII 表目錄 ................................................................................................. XV 符號說明 ............................................................................................ XVI 第一章 緒論 ......................................................................................... 1 1-1 研究目的與背景 .................................................................. 1 1-2 文獻回顧................................................................................ 3 1-2-1 灰預測 ........................................................................ 3 1-2-2 逆解法 ........................................................................ 5 1-3 研究重點與本文架構 .......................................................... 9 第二章 數值方法 ............................................................................... 12 2-1 簡介 ...................................................................................... 12 2-2 灰預測方法 .......................................................................... 14 2-3 逆向矩陣法 .......................................................................... 17 第三章 灰色預測在逆算非線性熱傳導問題上之應用 ................... 20 3-1 簡介 ...................................................................................... 20 3-2 物理模型與逆解運算 .......................................................... 21 3-2-1 模型建構 .................................................................. 21 3-2-2 逆解運算 .................................................................. 23 3-3 灰預測之運用 ...................................................................... 24 3-4 結果與討論 ….......................………………………….….. 27 第四章 灰色理論在逆解估算熔解爐非均勻爐壁厚度之預測 ....... 47 4-1 簡介 ...................................................................................... 47 4-2 物理模型與逆解運算 .......................................................... 48 4-2-1 物理模型基本架構 .................................................. 48 4-2-2 模型建構 .................................................................. 49 4-2-3 逆解運算 .................................................................. 51 4-3 灰預測之運用 ...................................................................... 54 4-3-1 溫度量測誤差 .......................................................... 54 4-3-2 灰預測方法 .............................................................. 54 4-4 結果與討論 …....................................…………………...... 55 第五章 灰預測在管流穩態熱傳逆問題分析之應用 ….........…….. 85 5-1 簡介 ................................................................................….. 85 5-2 物理模型與直接解法 ....................................................….. 86 5-2-1 物理模型基本架構 .................................................. 86 5-2-2 直接解法 .................................................................. 88 5-3 逆模型建構與逆解運算 ............................................…….. 90 5-3-1 逆模型建構 ................................………………….. 90 5-3-2 逆解運算 ............................……………………….. 93 5-4 灰預測在逆解法之運用 ............................……………….. 95 5-4-1 量測誤差 ............................……………………….. 95 5-4-2 灰預測之運用 ............................…………..……… 96 5-5 結果與討論............................……………………………… 97 第六章 結論與建議 …..................................................................... 118 6-1 結論 ..............................................................…………….. 118 6-2 未來研究方向與建議.......................................................... 119 參考文獻 .......................................................................................….. 121

    參考文獻

    1. Yang, C. Y. and Chen, C. K., The Boundary Estimation in Two-Dimensional Inverse Heat Conduction Problems, Journal of Physics D: Applied Physics, Vol. 29, No. 2, pp. 333-339, 1996.
    2. Deng, J. L., Control Problems of Grey Systems, Systems & Control Letters, Vol. 1, No. 5, 1982.
    3. Deng, J. L., Introduction to Grey System Theory, Journal of Grey System, Vol. 1, No.1, pp. 1-24, 1989.
    4. Deng, J. L. and Hong, G., Grey Prediction: Theory and Applications. CHWA Publishing, Taipei, pp. 1.40-1.44, 1996.
    5. Deng, J. L., The Basic Method of Grey System, published by Hwa Chung University of Science & Technology, 1996.
    6. Luo, M. and Kuhnell, B. T., Forecasting machine condition using grey system theory, Condition Montoring and Diagnostic Techonology, Vol. 1, No. 3, pp.102-105, 1991.
    7. Luo, M. and Kuhnell, B. T., The application of grey system theory in machine condition monitoring, The Journal of Grey System, Vol. 3, No. 3, pp.237-246, 1991.
    8. Lu, Z. J., Zhn, X. Q., and Zhang, F. L., Application of grey system theory to gearbox fault recognition, Proc. Of 2nd International Conference on IDTD, pp.20-26, 1991.
    9. Luo, M. and Kuhnell, B. T., Diagnosis of rotating machine faults using grey relational grade analysis, Condition Monitoring and Diagnostic Technology , Vol. 2, No. 4, pp. 119-124, 1992.
    10. Luo, M. and Kuhnell, B. T., Fault detection using grey relational grade analysis, The Journal of Grey System, Vol. 5, No. 4, pp. 319-328, 1993.
    11. Wen, K. L. and Wu, J. H., The grey-fuzzy relational model and its application to welding flaw identification, The Journal of Grey System, Vol. 7, No. 4, pp. 331-338, 1995.
    12. Chang, S. C. and Yu, H. C., A variable P value rolling Grey forecasting model for Taiwan semiconductor industry production, Technological Forecasting and Social Change, Vol. 72, No. 5, pp. 623-640, 2005.
    13. Chiang, J. Y. and Chen, C. K., Application of grey prediction to inverse nonlinear heat conduction problem, Int. J. Heat and Mass transfer, Vol. 51, Issues 3-4, pp. 576-585, 2008.
    14. Hsin, C. Y. and Tsai, Y. P., The Study on α Value Adjustment Method of Grey Prediction Z(1)(k), Grey System Theory Seminar in 2001, Taiwan, pp. 305-308, 2001.
    15. Phillips, D. L., A technique for the numerical solution of certain integral equations of the first kind, J. Assoc. comput. Mach 9, 1962.
    16. Backus, G. and Gilbert, P., Numerical applications of a formalism for geophysical inverse problems, Geophys J. Roy. Astron, Vol. 13, pp. 247-276, 1967.
    17. Beck, J. V., Surface Heat Flux Determination Using an Integral Method, Nucl. Eng. Des., Vol. 7, pp. 170-178, 1968.
    18. Tikhnov, A. N. and Arsenin, V. Y., Solution of ill-posed problems, V. H. Winston and Washington D.C., 1977.
    19. Shumakov, N. V., A Method for the Experimental Study of the Process. of Heating a Solid body, soviet Physics-Technical Physics (Translated by Institute of Physics), Vol. 2, pp. 771, 1957.
    20. Stolz, G. Tr., Numerical Solution to An Inverse Problem of Heat Condition for Simple Shapes, ASME Journal of Heat Transfer, Vol. 82, pp. 20-26, Feb. 1960.
    21. Beck, J. V., Calculation of Surface Heat Flux from an Integral Temperature History, ASME J. Heat Transfer, 62-HT-46, 1962.
    22. Sparrow, E. M., Haji-Sheikh, A. and Lundgren, T. S., The Inverse Problem in Transient Heat Conduction, J. Appl. Mech., vol. 86e, pp. 369-375, 1964.
    23. Beck, J. V., Nonlinear estimation applied to the nonlinear inverse heat conduction problem, Int. J. of Heat and mass Transfer, Vol 13, pp. 703-716, 1970.
    24. Beck, J. V., Litkouhi, B. and St. Clair, C. R., Efficient Sequential Solution of Nonlinear Inverse Heat Conduction Problem, Numerical Heat Transfer, Vol.5, pp. 275-286, 1982.
    25. Zienkiewicz, O. C., The Finite Element Method in Engineering Science, McGraw-Hill, London, 1971.
    26. Yoshimura, T. and Ikuta, K., Inverse Heat-Conduction Problem by Finite-Element Formulation, Int. J. System Sci., Vol. 16, pp. 1365-1376, 1985.
    27. Zabaras, N. and Liu, J. C., An Analysis of Two-Dimensional Linear Inverse Heat Transfer Problem Using an Integral Method, Numerical Heat Transfer, Vol. 13, pp. 527-533, 1988.
    28. Bass, B. R., Application of the Finite Element Method to the Nonlinear Inverse Heat Conduction Problem Using Beck's Second Method, ASME Journal of Engineering for Industry, Vol. 102, pp. 168-176, 1980.
    29. Krzysztof, G., Cialkowski, M. J. and Kaminski, H., An Inverse Temperature Field Problem of The Theory of Thermal Stresses, Nucl. Eng. Des., Vol. 64, pp. 169-184, 1981.
    30. Beck, J. V. and Wolf, H., The Non-linear Inverse Heat Conduction Problem. ASME J. Heat Transfer, No. 65-HT-40, 1965.
    31. Fidelle, T. P. and Zinsemeister, G. E., A Semi-discrete Approximate Solution of The Inverse Problem of Transient Heat Conduction, ASME J. Heat Transfer, No. 68-WA/HT-26, 1968.
    32. D’Souza, N., Numerical Solution of One-dimensional Inverse Transient Heat Conduction by Finite Difference Method, ASME J. Heat Transfer, No. 75-WA/HT-81, 1975.
    33. Krutz, G. W., Schoenhals, R. J. and Hore, P. S., Application of The Finite-Element Method to The Inverse Heat Conduction Problem, Num. Heat Transfer, Vol. 1, pp. 489-498, 1978.
    34. Hsu, T. R., Sun, N. S., Chen, G. G. and Gong, Z. L., Finite Element Formulation for Two-dimensional Inverse Heat Conduction Analysis, ASME J. Heat Transfer, Vol. 114, pp. 553-557, 1992.
    35. Michael, A. K. and Boris Rubinsky, An Inverse finite-Element Technique to Determine the Change of Phase Interface Location in One-Dimensional Melting Problems, Numerical Heat Transfer, Vol. 7, pp. 269-283, 1984.
    36. Alifanov, O. M., Solution of an Inverse Problem of Heat Conduction by Iteration Method, Journal of Engineering Physics, Vol. 25, pp. 471-476, 1974.
    37. Alifanov, O. M. and Mikhailov, V. V., Solution of the Nonlinear Inverse Thermal Conductivity Problem by the Iteration Method, Journal of Engineering Physics, Vol. 35, pp. 1501-1506, 1978.
    38. Huang, C. H., Ozisik, M. N. and Sawaf, B., Conjugate Gradient Method for Determining Unknown Contact Conductance during Metal Casting, Int. J. Heat Mass Transfer, Vol. 35, No. 7, pp. 779-786, 1992.
    39. Orlande, H. R. B. and Ozisik, M. N., Inverse Problem of Estimating Interface Conductance between Periodically Casting Surface, J. of Thermophysics and Heat Transfer, Vol. 17, No. 2, pp. 319-325, 1993.
    40. Kerov, N. V., Solution of the Two Dimension Inverse Heat Conduction Problem in a Cylindrical Coordinate System, J. of Engineering Physics, Vol. 45, pp. 752-756, 1983.
    41. Hills, R. G., Mulholland, G. P. and Matthews, L. K., The Application of The Backus-Gilbert Method to the Inverse Heat Conduction Problem in composite Media, ASME Paper No. 82-HT-26, 1982.
    42. Frank, I., An Application of Least Squares Method to The Solution of The Inverse Problem of Heat Conduction, J. Heat Transfer, 85C, pp. 378-379, 1963.
    43. Mulholland, G. P., Gupta, B. P. and San Martin, R. L., Inverse Problem of Heat Conduction in Composite Media, ASME Paper No. 75-WA/HT-83, 1975.
    44. Arledge, R. G. and Haji-Sheikh, A., An Iterative Approach to The Solution of Inverse Heat Conduction Problems, Numerical Transfer, Vol. 1, pp. 365-376, 1978.
    45. Deverall, L. I. and Channapragade, R. S., An New Integral Equation for Heat Flux in Inverse Heat Conduction, J. Heat Transfer, 88C., pp. 327-328, 1966.
    46. Burggraf, O. R., An Exact Solution of The Inverse Problem in Heat Conduction Theory and Applications, ASME J. Heat Transfer, Vol. 84, pp. 373-382, 1964.
    47. Trujillo, D. M., Application of Dynamic Programming to The General Inverse Problem, Int. J. Numer. Methods Eng., Vol. 12, pp. 613-624, 1978.
    48. Flach, G. P. and Ozisik, M. N., Inverse Heat Conduction Problem of Simultaneously Estimating Spatially Varying Thermal Conductivity and Heat Capacity Per Unit Volume, Numerical Heat Transfer, Part A, Vol. 16, pp.249-266, 1996.
    49. Flach, G. P. and Ozisik M. N., Analysis of Sequential Method of Solving the Inverse Heat Conduction Problem, Numerical Heat Transfer, Part B, Vol. 24, pp. 455-474, 1993.
    50. Blanc, G. and Raynaud, M., Solution of the Inverse Heat Conduction Problem from Thermal Strain Measurements, ASME J. Heat Transfer, Vol. 118, pp. 842-849, 1996.
    51. Lin, J., Lee, S. L. and Weng, C. I., Estimation of Cutting Temperature in High Speed Machining, ASME J. Engineering Materials and Technology, Vol. 114, pp.289-296, 1996.
    52. Lam, T. T. and Yeung, W. K., Inverse Determination of Thermal Conductivity for One-Dimensional Problems, J. Thermophysics and Heat Transfer, Vol. 9, No. 2, pp. 335-344, 1995.
    53. Yeung, W. K. and Lam, T. T., Second-Order Finite Difference Approximation for Inverse Determination of Thermal Conductivity, Int. J. Heat mass Transfer, Vol. 39, No. 17, pp. 3685-3693, 1996.
    54. Liu, F. B. and Ozisik, M. N., Simultaneous Estimation of Fluid Thermal Conductivity and Heat Capacity in Laminar Duct Flow, J. Franklin Inst., Vol. 333(B), No. 4, pp. 583-591, 1996.
    55. Bass, B. R. and Ott, L. J., A Finite Element Formulation of The Two-Dimensional Inverse Heat Conduction Problem, Adv. Comput. Technol., Vol. 2, pp. 238-248, 1980.
    56. Liu, Y. and Murio, D. A., Numerical Experiments in 2-D IHCP on Bounded Domains Part I: The ‘Interior’ Cube Problem, Computer Math. Applic. Vol.31, No.1, pp.15-32, 1996.
    57. Zabaras, N. and Liu, J. C., An Analysis of Two-dimensional Linear Inverse Heat Transfer Problems Using an Integral Method, Numerical Heat Transfer, Vol. 13, pp. 527-533, 1988.
    58. Busby, H. R. and Trujillo, D. M., Numerical Solution to a Two-Dimensional Inverse Heat Conduction Problem, Int. J. for Numerical Methods in Engineering, Vol. 21, pp. 349-359, 1985.
    59. Tseng, A. A., Chen, T. C. and Zhao, F. Z., Direct Sensitivity Coefficient Method for Solving Two-dimensional Inverse Heat Conduction Problems by finite-element Scheme, Num. Heat Transfer, Part B, Vol. 27, pp. 291-307, 1995.
    60. Huang, C. H. and Ozisik, M. N., Inverse Problem of Determining Unknown Wall Heat Flux in Laminar Flow Through a Parallel Plate Duck, Numer. Heat Transfer, Vol. 21, pp. 55-70, 1992.
    61. Huang, C. H. and Wu, J. Y., Two-dimensional inverse problem in estimating heat fluxes of an enclosure with unknown internal heat sources, J. Appl. Phys., Vol. 76, pp. 133-141, 1994.
    62. Huang, C. H. and Ozisik, M. N., Inverse Problem of Determining the Unknown Strange of an Internal Plate Heat Source, J. Franklin Inst., Vol. 329, pp. 751-764, 1992.
    63. Huang, C. H. and Ju, T. M., Inverse Problem of Determining the Periodic Thermal Contact Conductance Between Exhaust Valve and Seat an Internal combustion Engine, ASME 1993 National Heat Transfer Conference, Paper No. 93-HT-35, Atlanta, GA. (8-11 August 1993).
    64. Huang, C. H. and Ju, T. M., Two dimensional Inverse Problem of determining the Interface Contact Conductance between Exhaust Valve and Seat an Internal Combustion Engine, 22nd International Thermal conductivity Conference, Tempe. AZ. pp. 985-997, (7-10 November 1993).
    65. Huang, C. H. and Wu, J. Y., Two Dimensional Inverse Problem of Estimating Heat Fluxes inside Internal Combustion Engines, J. Appl. Phys. , Vol. 76, No. 1, 1994.
    66. Huang, C. H., Ju, T. M. and Tseng, A. A., The Estimation of Surface Thermal Behavior of the Working Roll in Hot Rolling Process, Int. J. Heat Mass Transfer, Vol. 38, No. 6, pp. 1019-1031, 1995.
    67. Huang, C. H. and Wu, J. Y., An Inverse Problem of Determining Two Boundary Heat Fluxes in Unsteady Heat Conduction of Thick-Walled Circular Cylinder, Inverse Problems in Engineering, Vol. 1 No. 2, pp. 133-151, 1995.
    68. Huang, C. H. and Yan, J. Y., An Inverse Problem in Simultaneously Measuring Temperature-Dependent Thermal Conductivity and Heat Capacity, Int. J. Heat Mass Transfer, Vol. 38, No. 18, pp. 3433-3441, 1995.
    69. Chen, H. T. and Chang, S. M., Application of the Hybrid Method to Inverse Heat Conduction Problems, Int. J. Heat mass Transfer, Vol. 33, No.4, pp. 621-628, 1990.
    70. Chen, H. T. and Lin, J. Y., Analysis of Two-dimensional Hyperbolic Heat Conduction Problems, Int. J. Heat mass Transfer, Vol. 37, No. 1, pp. 153-164, 1994.
    71. Chen, H. T., Lin, J. Y., Wu, C. H. and Huang, C. H., Numerical algorithm for Estimating Temperature-Dependent Thermal Conductivity, Numerical Heat Transfer, Part B: Fundamentals, Vol. 29, Issue 4, pp. 509-522, June 1996.
    72. Chen, H. T. and Lin, J. Y., Hybrid Laplace Transform Technique for Nonlinear Transient Thermal Problems, Int. J. Heat mass Transfer, Vol. 34, pp. 1301-1308, 1991.
    73. Zheng, H. and Murio, D. A., 3D-IHCP on a Finite Cube, Computer Math. Applic., Vol. 31, No. 1, pp. 1-14, 1996.
    74. 鄧聚龍, 灰色預測與決策, 華中理工大學出版社, 1986.
    75. 史開泉、吳國威、黃有評, 灰色信息關係論, 全華科技圖書股份有限公司, 1994.
    76. Pfahl, R. C. Jr., Nonlinear Least-Squares: A Method for Simultaneous Thermal Property Determination in Ablating Polymeric Materials, Journal of Applied Polymer Science, Vol. 10, pp. 1111-1119, 1966.
    77. Tervola, P., A Method to Determine the Thermal Conductivity from Measured Temperature Profiles, International Journal of Heat and Mass Transfer, Vol. 32, pp. 1425-1430, 1989.
    78. Jarny, Y., Ozisik, M. N., and Bardon, J. P., A General Optimization Method Using Adjoint Equation for Solving Multidimensional Inverse Heat Conduction, International Journal of Heat and Mass Transfer, Vol. 34, pp. 2911-2919, 1991.
    79. Ouyang, T., Analysis of Parameter Estimation Heat Conduction Problems with Phase Change Using the Finite Element Method, International Journal for Numerical Methods in Engineering, Vol. 33, pp. 2015-2037, 1992.
    80. Richter, G. R., An Inverse Problem for the Steady State Diffusion Equation, SIAM Journal on Applied Mathematics, Vol. 41, No. 2, pp. 210-221, 1981.
    81. Kitamura, S., and Nakagiri, S., Identifiability of Spatially-Varying and Constant Parameters in Distributed Systems of Parabolic Type, SIAM Journal on Control and Optimization, Vol. 15, pp. 785-802, 1977.
    82. Lund, J., and Vogel, C. R., A Fully-Galerkin Method for the Numerical Solution of an Inverse Problem in a Parabolic Partial Differential Equation, Inverse Problem, Vol. 6, No. 2, pp. 205-217, 1990.
    83. Artyukhin, E. A., Recovery of the Temperature Dependence of the Thermal Conductivity Coefficient from the Solution of the Inverse Problem, High Temperature, Vol. 19, pp. 698-702, 1981.
    84. Lam, Tung T., and Yeung, Wing K., Inverse determination of thermal conductivity for one-dimensional problems, AIAA, Journal of Thermophysics and Heat Transfer, Vol. 9, No. 2, pp. 335-344, 1995.
    85. Lin, J. H., Chen C. K. and Yang Y. T., Inverse method for estimating thermal conductivity in one-dimensional heat conduction problems, Journal of Thermophysics and Heat Transfer, Vol. 15, No. 11, pp. 34-41, 2001.
    86. Hsieh, C. K. and Ellingson, W. A., The feasibility of using infrared scanning to test flaws in ceramic materials, In Thermal Conductivity, Vol. 15, pp. 11, Plenum Press, New York, 1978.
    87. Hsieh, C. K. and Su, K. C., A methodology of predicting cavity geometry based on the scanned surface temperature data-prescribed surface temperature at the cavity side, J. Heat Transfer, Vol. 102, pp. 324-329, 1980.
    88. Wong, E. T. and Hsieh, C. K., Use of infrared scanners to make accurate temperature and position measurements, ASME paper, 83-HT-85, 1983.
    89. Hsieh, C. K., Lin, Z. Z. and Yang S. L., An inverse problem technique for detecting irregular cavities in circular cylinders by infrared scanning, J. nondestruct. Evaluation, Vol. 4, pp. 131-138, 1985.
    90. Hsieh, C. K. and Kassab, Alain J., A general method for the solution of inverse heat conduction problems with partially unknown system geometries, Int. J. Heat Mass Transfer, Vol. 29, No. 1, pp. 47-58, 1986.
    91. Lin, J. H., Chen, C. K. and Yang, Y. T., An inverse method for simultaneous estimation of the center and surface thermal behavior of a heated cylinder normal to a turbulent air stream, J. Heat Transfer, Vol. 124, No. 4, pp. 601-608, 2002.
    92. Chen, C. K., Wu, L. W. and Yang, Y. T., Application of the inverse method to the estimation of heat flux and temperature on the external surface in laminar pipe flow, Applied Thermal Engineering, Vol. 26, Issues 14-15, pp. 1714-1724, 2006.
    93. Chen, C. K., Wu, L. W. and Yang, Y. T., Estimation of unknown outer-wall heat flux in turbulent circular pipe flow with conduction in the pipe wall, International Journal of Heat and Mass Transfer, Vol. 48, Issues 19-20, pp. 3971-3981, 2005.

    下載圖示 校內:2009-08-13公開
    校外:2009-08-13公開
    QR CODE