| 研究生: |
黃哲緯 Huang, Che-Wei |
|---|---|
| 論文名稱: |
有機染料分子修飾溶膠凝膠之氧化鋅應用於反式高分子太陽能電池 Sol-gel ZnO modified by organic dye molecules for efficient inverted polymer solar cells |
| 指導教授: |
溫添進
Wen, Ten-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 高分子太陽能電池 、氧化鋅 、界面修飾 、有機染料分子 |
| 外文關鍵詞: | polymer solar cell, ZnO, interfacial modification, organic dye molecules |
| 相關次數: | 點閱:64 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以三苯基甲烷類染料分子做為氧化鋅之添加劑,藉由將染料分子直接加入溶膠凝膠法製程的氧化鋅前驅液裡,去修飾氧化鋅上的缺陷,並將改質後的氧化鋅應用在高分子太陽能電池裡,藉由摻雜的方式,可以在製備氧化鋅薄膜的同時一併完成界面修飾,以此提升整體元件的效率。
此研究主要使用結晶紫(Crystal violet, CV)和乙基紫(Ethyl violet, EV)作為氧化鋅電子萃取層的添加劑,經證實摻雜之染料分子會分布在整個氧化鋅層並鈍化其缺陷,其濃度會由表面往下逐漸遞減,存在表面之染料分子會藉由氯離子填補氧化鋅表面的氧空缺,存在氧化鋅層裡晶粒邊界的染料分子則會傾向未完全反應的羥基,降低其干擾電子傳輸的可能性。此外添加之染料分子可以形成界面偶極,使氧化鋅之功函數降低,進一步降低界面傳輸電子的能障,且摻雜染料分子後能使氧化鋅表面更趨疏水,促進其與主動層的界面相容性,也使得元件穩定性上升。因此經由結晶紫和乙基紫修飾後之元件效率可以從7.59%分別提升到8.80%和9.06%,約為16%和19%的增幅。
In this study, doped ZnO layer is prepared by blending organic dye molecules, Crystal violet (CV) and Ethyl violet (EV) to a typical sol-gel process and used as the electron transport layer in inverted polymer solar cells (PSCs). The CV or EV distributed in the whole ZnO layer and decreased progressively from surface to bottom are confirmed by depth profile of chloride. X-ray photoelectron spectroscopy (XPS) results further showed the presence of CV or EV in ZnO surface and indicated that the surface oxygen defect occupied by Cl by the formation of Zn-Cl bond. The dye molecules remained inside ZnO layer would lean to unreacted hydroxyl groups by the lone pair of nitrogen, hence reduce the possibility of interfering the electron transport. Besides, the formation of interface dipole by quaternary ammonium chloride would slightly reduce the work function of ZnO surface, further cut down the energy barrier between the ZnO layer and the active layer. The doped ZnO layer presented a smoother and more hydrophobic because of the dimethylaniline group and therefore enhance the contact with active layer. As a result, inverted PSCs based on CV doped ZnO and EV doped ZnO possess better morphology, better electron extraction ability and exhibit the power conversion efficiency (PCE) up to 8.80% and 9.06% respectively, in comparison to the pristine ZnO (7.59%) is about 16% and 19% enhancement. Here, we demonstrate a facile way to improve morphological and electrical properties of ZnO by simply doping organic dye molecules, and apply it to inverted PSCs to enhance the PCE.
1. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-190416.pdf, (revised 04/16, 2019).
2. D. Kearns and M. Calvin, Journal of Chemical Physics, 1958, 29, 950-951.
3. C. W. Tang, Applied Physics Letters, 1986, 48, 183-185.
4. N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, Science, 1992, 258, 1474-1476.
5. G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger, Science, 1995, 270, 1789-1791.
6. S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz and J. C. Hummelen, Applied Physics Letters, 2001, 78, 841-843.
7. F. Padinger, R. S. Rittberger and N. S. Sariciftci, Advanced Functional Materials, 2003, 13, 85-88.
8. Z. Q. Liang, Q. F. Zhang, O. Wiranwetchayan, J. T. Xi, Z. Yang, K. Park, C. D. Li and G. Z. Cao, Advanced Functional Materials, 2012, 22, 2194-2201.
9. S. Q. Zhang, L. Ye and J. H. Hou, Advanced Energy Materials, 2016, 6, 1502529.
10. K. W. Wong, H. L. Yip, Y. Luo, K. Y. Wong, W. M. Lau, K. H. Low, H. F. Chow, Z. Q. Gao, W. L. Yeung and C. C. Chang, Applied Physics Letters, 2002, 80, 2788-2790.
11. G. Greczynski, T. Kugler, M. Keil, W. Osikowicz, M. Fahlman and W. R. Salaneck, Journal of Electron Spectroscopy and Related Phenomena, 2001, 121, 1-17.
12. F. C. Krebs and K. Norrman, Progress in Photovoltaics, 2007, 15, 697-712.
13. M. P. de Jong, L. J. van Ijzendoorn and M. J. A. de Voigt, Applied Physics Letters, 2000, 77, 2255-2257.
14. H. You, Y. F. Dai, Z. Q. Zhang and D. G. Ma, Journal of Applied Physics, 2007, 101, 026105.
15. C. H. Cheung, W. J. Song and S. K. So, Organic Electronics, 2010, 11, 89-94.
16. A. Watanabe and A. Kasuya, Thin Solid Films, 2005, 483, 358-366.
17. M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis and D. S. Ginley, Applied Physics Letters, 2006, 89, 143517.
18. M. Y. Song, K. J. Kim and D. Y. Kim, Solar Energy Materials and Solar Cells, 2005, 85, 31-39.
19. Y. C. Zhou, H.; Potscavage, J.W.J.; Fuentes-Hernandez, C.; Kim, S.-J.; Kippelen, B, Journal of Materials Chemistry, 2010, 20, 6189.
20. J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. L. Ma, X. Gong and A. J. Heeger, Advanced Materials, 2006, 18, 572.
21. K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho and A. J. Heeger, Advanced Materials, 2007, 19, 2445.
22. C. W. Chen, Y. J. Lu, C. C. Wu, E. H. E. Wu, C. W. Chu and Y. Yang, Applied Physics Letters, 2005, 87, 241121.
23. Y. Zhu, X. Xu, L. Zhang, J. Chen and Y. Cao, Solar Energy Materials and Solar Cells, 2012, 97, 83-88.
24. W. J. E. Beek, M. M. Wienk and R. A. J. Janssen, Advanced Materials, 2004, 16, 1009-1013.
25. J. Gilot, I. Barbu, M. M. Wienk and R. A. J. Janssen, Applied Physics Letters, 2007, 91, 113520.
26. J. Liu, S. Y. Shao, B. Meng, G. Fang, Z. Y. Xie, L. X. Wang and X. L. Li, Applied Physics Letters, 2012, 100, 213906.
27. Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter and A. J. Heeger, Advanced Materials, 2011, 23, 1679-1683.
28. Y. Vaynzof, D. Kabra, L. H. Zhao, P. K. H. Ho, A. T. S. Wee and R. H. Friend, Applied Physics Letters, 2010, 97, 033309.
29. C. Y. Chang, K. T. Lee, W. K. Huang, H. Y. Siao and Y. C. Chang, Chemistry of Materials, 2015, 27, 5122-5130.
30. A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao and D. L. Kwong, Applied Physics Letters, 2008, 93, 221107.
31. Y. M. Sun, J. H. Seo, C. J. Takacs, J. Seifter and A. J. Heeger, Advanced Materials, 2011, 23, 1679-1683.
32. Z. Y. Hu, J. J. Zhang and Y. J. Zhu, Solar Energy Materials and Solar Cells, 2013, 117, 610-616.
33. M. N. Kamalasanan and S. Chandra, Thin Solid Films, 1996, 288, 112-115.
34. L. K. Jagadamma, M. Abdelsamie, A. El Labban, E. Aresu, G. O. N. Ndjawa, D. H. Anjum, D. Cha, P. M. Beaujuge and A. Amassian, Journal of Materials Chemistry A, 2014, 2, 13321-13331.
35. A. L. Roest, J. J. Kelly, D. Vanmaekelbergh and E. A. Meulenkamp, Physical Review Letters, 2002, 89.
36. S. K. Hau, H. L. Yip, J. Y. Zou and A. K. Y. Jen, Organic Electronics, 2009, 10, 1401-1407.
37. S. K. Hau, H. L. Yip and A. K. Y. Jen, Polymer Reviews, 2010, 50, 474-510.
38. D. Y. Liu and T. L. Kelly, Nature Photonics, 2014, 8, 133-138.
39. W. J. Qin, X. R. Xu, D. Y. Liu, C. Y. Ma, L. Y. Yang, S. G. Yin, F. L. Zhang and J. Wei, Journal of Renewable and Sustainable Energy, 2013, 5, 053106.
40. F. C. Krebs, Y. Thomann, R. Thomann and J. W. Andreasen, Nanotechnology, 2008, 19.
41. J. M. Cho, S. W. Kwak, H. Aqoma, J. W. Kim, W. S. Shin, S. J. Moon, S. Y. Jang and J. Jo, Organic Electronics, 2014, 15, 1942-1950.
42. C. E. Small, S. Chen, J. Subbiah, C. M. Amb, S. W. Tsang, T. H. Lai, J. R. Reynolds and F. So, Nature Photonics, 2012, 6, 115-120.
43. R. Steim, S. A. Choulis, P. Schilinsky and C. J. Brabec, Applied Physics Letters, 2008, 92, 093303.
44. J. H. Seo, A. Gutacker, B. Walker, S. N. Cho, A. Garcia, R. Q. Yang, T. Q. Nguyen, A. J. Heeger and G. C. Bazan, Journal of the American Chemical Society, 2009, 131, 18220-18221.
45. F. Huang, H. B. Wu, D. Wang, W. Yang and Y. Cao, Chemistry of Materials, 2004, 16, 708-716.
46. C. Hoven, R. Yang, A. Garcia, A. J. Heeger, T. Q. Nguyen and G. C. Bazan, Journal of the American Chemical Society, 2007, 129, 10976-10977.
47. J. F. Fang, B. H. Wallikewitz, F. Gao, G. L. Tu, C. Muller, G. Pace, R. H. Friend and W. T. S. Huck, Journal of the American Chemical Society, 2011, 133, 683-685.
48. Z. C. He, C. M. Zhong, X. Huang, W. Y. Wong, H. B. Wu, L. W. Chen, S. J. Su and Y. Cao, Advanced Materials, 2011, 23, 4636-4643.
49. J. H. Seo, A. Gutacker, Y. M. Sun, H. B. Wu, F. Huang, Y. Cao, U. Scherf, A. J. Heeger and G. C. Bazan, Journal of the American Chemical Society, 2011, 133, 8416-8419.
50. T. B. Yang, M. Wang, C. H. Duan, X. W. Hu, L. Huang, J. B. Peng, F. Huang and X. Gong, Energy & Environmental Science, 2012, 5, 8208-8214.
51. J. Jo, J. R. Pouliot, D. Wynands, S. D. Collins, J. Y. Kim, T. L. Nguyen, H. Y. Woo, Y. M. Sun, M. Leclerc and A. J. Heeger, Advanced Materials, 2013, 25, 4783-4788.
52. X. Guan, K. Zhang, F. Huang, G. C. Bazan and Y. Cao, Advanced Functional Materials, 2012, 22, 2846-2854.
53. C. H. Duan, K. Zhang, X. Guan, C. M. Zhong, H. M. Xie, F. Huang, J. W. Chen, J. B. Peng and Y. Cao, Chemical Science, 2013, 4, 1298-1307.
54. T. Hu, F. Li, K. Yuan and Y. W. Chen, Acs Applied Materials & Interfaces, 2013, 5, 5763-5770.
55. R. Lampande, G. W. Kim, R. Pode and J. H. Kwon, Rsc Advances, 2014, 4, 49855-49860.
56. Y. H. Zhou, F. H. Li, S. Barrau, W. J. Tian, O. Inganas and F. L. Zhang, Solar Energy Materials and Solar Cells, 2009, 93, 497-500.
57. Y. H. Cheng, Q. D. Yang, J. Y. Xiao, Q. F. Xue, H. W. Li, Z. Q. Guan, H. L. Yip and S. W. Tsang, Acs Applied Materials & Interfaces, 2015, 7, 19986-19993.
58. B. A. E. Courtright and S. A. Jenekhe, Acs Applied Materials & Interfaces, 2015, 7, 26167-26175.
59. X. H. Yang, R. X. Wang, C. J. Fan, G. Q. Li, Z. H. Xiong and G. E. Jabbour, Organic Electronics, 2014, 15, 2387-2394.
60. Y. H. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Bredas, S. R. Marder, A. Kahn and B. Kippelen, Science, 2012, 336, 327-332.
61. X. Yu, X. M. Yu, J. J. Zhang, G. S. Zhao, J. Ni, H. K. Cai and Y. Zhao, Solar Energy Materials and Solar Cells, 2014, 128, 307-312.
62. X. Yu, X. M. Yu, J. J. Zhang, D. K. Zhang, H. K. Cai and Y. Zhao, Rsc Advances, 2015, 5, 58966-58972.
63. C. H. Wu, C. Y. Chin, T. Y. Chen, S. N. Hsieh, C. H. Lee, T. F. Guo, A. K. Y. Jen and T. C. Wen, Journal of Materials Chemistry A, 2013, 1, 2582-2587.
64. W. Yu, L. Huang, D. Yang, P. Fu, L. Zhou, J. Zhang and C. Li, Journal of Materials Chemistry A, 2015, 3, 10660-10665.
65. L. Nian, W. Q. Zhang, S. P. Wu, L. Q. Qin, L. L. Liu, Z. Q. Xie, H. B. Wu and Y. G. Ma, Acs Applied Materials & Interfaces, 2015, 7, 25821-25827.
66. X. H. Ouyang, R. X. Peng, L. Ai, X. Y. Zhang and Z. Y. Ge, Nature Photonics, 2015, 9, 520-524.
67. J. X. Han, Y. C. Chen, W. P. Chen, C. Z. Yu, X. X. Song, F. H. Li and Y. Wang, Acs Applied Materials & Interfaces, 2016, 8, 32823-32832.
68. B. A. Guo, J. X. Han, J. Qiu, C. Z. Yu, Y. Q. Sun, F. H. Li, Z. H. Hu and Y. Wang, Acs Applied Materials & Interfaces, 2017, 9, 42969-42977.
69. C. Goh, S. R. Scully and M. D. McGehee, Journal of Applied Physics, 2007, 101, 114503.
70. S. K. Hau, H. L. Yip, O. Acton, N. S. Baek, H. Ma and A. K. Y. Jen, Journal of Materials Chemistry, 2008, 18, 5113-5119.
71. H. L. Yip, S. K. Hau, N. S. Baek and A. K. Y. Jen, Applied Physics Letters, 2008, 92, 193313.
72. H. L. Yip, S. K. Hau, N. S. Baek, H. Ma and A. K. Y. Jen, Advanced Materials, 2008, 20, 2376-2382.
73. S. K. Hau, Y. J. Cheng, H. L. Yip, Y. Zhang, H. Ma and A. K. Y. Jen, Acs Applied Materials & Interfaces, 2010, 2, 1892-1902.
74. S. K. Hau, H. L. Yip, H. Ma and A. K. Y. Jen, Applied Physics Letters, 2008, 93.
75. T. Stubhan, H. Oh, L. Pinna, J. Krantz, I. Litzov and C. J. Brabec, Organic Electronics, 2011, 12, 1539-1543.
76. S. Trost, K. Zilberberg, A. Behrendt, A. Polywka, P. Gorrn, P. Reckers, J. Maibach, T. Mayer and T. Riedl, Advanced Energy Materials, 2013, 3, 1437-1444.
77. J. Alstrup, M. Jorgensen, A. J. Medford and F. C. Krebs, Acs Applied Materials & Interfaces, 2010, 2, 2819-2827.
78. H. Oh, J. Krantz, I. Litzov, T. Stubhan, L. Pinna and C. J. Brabec, Solar Energy Materials and Solar Cells, 2011, 95, 2194-2199.
79. K. S. Shin, K. H. Lee, H. H. Lee, D. Choi and S. W. Kim, Journal of Physical Chemistry C, 2010, 114, 15782-15785.
80. M. Thambidurai, J. Y. Kim, J. Song, Y. Ko, H. J. Song, C. M. Kang, N. Muthukumarasamy, D. Velauthapillai and C. Lee, Journal of Materials Chemistry C, 2013, 1, 8161-8166.
81. A. K. K. Kyaw, X. W. Sun, D. W. Zhao, S. T. Tan, Y. Divayana and H. V. Demir, Ieee Journal of Selected Topics in Quantum Electronics, 2010, 16, 1700-1706.
82. X. H. Liu, X. D. Li, Y. R. Li, C. J. Song, L. P. Zhu, W. J. Zhang, H. Q. Wang and J. F. Fang, Advanced Materials, 2016, 28, 7405-7412.
83. O. Pachoumi, C. Li, Y. Vaynzof, K. K. Banger and H. Sirringhaus, Advanced Energy Materials, 2013, 3, 1428-1436.
84. Z. Yin, Q. Zheng, S. C. Chen, D. Cai, L. Zhou and J. Zhang, Advanced Energy Materials, 2014, 4, 1301404.
85. S. H. Liao, H. J. Jhuo, Y. S. Cheng and S. A. Chen, Advanced Materials, 2013, 25, 4766-4771.
86. S. H. Liao, H. J. Jhuo, P. N. Yeh, Y. S. Cheng, Y. L. Li, Y. H. Lee, S. Sharma and S. A. Chen, Scientific Reports, 2014, 4, 6813.
87. F. Li, A. Werner, M. Pfeiffer, K. Leo and X. Liu, The Journal of Physical Chemistry B, 2004, 108, 17076-17082.
88. F. Yang, D. W. Kang and Y. S. Kim, Rsc Advances, 2017, 7, 19030-19038.
89. M. F. Khan, M. Hameedullah, A. H. Ansari, E. Ahmad, M. B. Lohani, R. H. Khan, M. M. Alam, W. Khan, F. M. Husain and I. Ahmad, International Journal of Nanomedicine, 2014, 9, 853-864.
90. E. A. Araujo, F. X. Nobre, G. D. Sousa, L. S. Cavalcante, M. Santos, F. L. Souza and J. M. E. de Matos, Rsc Advances, 2017, 7, 24263-24281.
校內:2024-08-31公開