| 研究生: |
劉人豪 Liu, Ren-Hao |
|---|---|
| 論文名稱: |
模內裝飾射出成型製程應用於三維模塑互聯器件之研究 Application of In-mold Decoration of Injection Molding in Three-Dimensional Molded Interconnect Devices |
| 指導教授: |
楊文彬
Young, Wen-Bin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2014 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 181 |
| 中文關鍵詞: | 模內裝飾射出成型 、立體電路板射出成型 、導電油墨 、熱壓成型 、毛刺 |
| 外文關鍵詞: | In-mold Decoration Injection Molding, Three-dimensional Molded Interconnect Devices, Conductive Ink, Thermoforming, Burr |
| 相關次數: | 點閱:102 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
三維模塑互聯器件(3D-Molded Interconnect Devices)簡稱3D-MID。是在塑膠製品上整合機械與電子的功能,在製品上具有電路設計,使得該產品同時具有機械結構與電子電路特性。本文是以模內裝飾射出成型製程(In-Mold Decoration, 簡稱IMD)應用在3D-MID,IMD製程是把設計電路線印刷在塑膠薄膜上,此塑膠薄膜再經由熱壓成型成為產品外形之3D形狀,此3D曲面薄膜經沖裁後再嵌入模穴中做射出成形製造為3D-MID產品。IMD製程優點為設備成本低、針對單一產品外觀可印刷多樣化之線路設計、且製程速度較快等。
IMD製程主要包括四個階段:1.薄膜油墨印刷。2.薄膜立體成型。3.薄膜沖裁。4.薄膜嵌入射出成型。每個階段都會影響到成品的品質與成本,故本文將探討IMD製程階段對3D-MID之品質影響。
在第一階段薄膜油墨印刷所遇到的問題為一般電路薄膜是採用導電銀漿印刷,但由於導電銀漿成本相當昂貴。本實驗提出一個新製程是以導電油墨經由電鍍製程來提高導電性及降低成本。實驗結果顯示,油墨添加20%碳黑導電填料,在PC薄膜上印刷線寬0.9mm×線長40mm,量測其電阻值為104Ω,經由電鍍銅後電阻值為1.3Ω。
在第二階段薄膜立體成型所遇到的問題為塑膠薄膜在熱壓時受到沖頭及模具溫度影響,薄膜越容易拉伸變形,導致薄膜上設計的圖案產生失真變形。本實驗設計一副熱壓模具以半圓球直徑100mm,高度50mm做為研究模型,薄膜材質為PC(厚度0.178mm),探討薄膜上設計電路圖案由2D轉變成3D及3D映射到2D圖案。實驗結果顯示,在熱壓成型過程中,在產品頂端處無產生薄膜變形,在側邊處薄膜變形最為嚴重,其變形率47.6%,透過變形模型可預測變形率為49.4%,變形模型誤差在X方向為10.3%,Y方向為5.8%;T-SIM分析誤差在X方向為17.2%,Y方向為20%。
在第三階段薄膜沖裁時會遇到塑膠薄膜沖裁後在裁斷面邊緣產生毛刺會造成射出件邊緣不良。本實驗設計一副沖裁模具,以PC薄膜(厚度1mm)做為沖裁斷面現象研究。實驗結果顯示,PC薄膜沖裁斷面有四個部分,1.塌角區,2.剪切區,3.斷裂區,4.毛刺。PC薄膜裁切後都有毛刺,毛刺平均值為63±17.4μm。當薄膜溫度愈高,毛刺尺寸愈長;間隙過大,毛刺尺寸愈長。間隙過小,剪斷面所占比例較大;間隙過大,剪斷面變窄。
最後在第四階段薄膜嵌入射出成型階段會遇到電路薄膜影響成型品在加熱及冷卻階段,成品表面溫度差異不均,而造成成品翹曲變形,使成品無法組裝。本實驗以圓盤模具做為翹曲變形探討,塑料為80%PC/20%ABS,以PC薄膜(厚度0.178mm)嵌入模穴,進行射出成。實驗結果顯示,料溫250℃會短射且影響翹曲量最為嚴重其值為3.22mm,模溫90℃可使翹曲量降低至0.63mm。
Three Dimensional Molded Interconnect Devices, also known as 3D-MID, integrate both mechanical and electrical functions on plastic substrates. The products are characterized with mechanical structures and electric circuits. This research is based on In-Mold Decoration, also known as IMD, process for 3D-MID. IMD process prints electric circuits on plastic films which are subsequently thermoformed to 3D surface for final products. The thermoformed 3D plastic film is then trimmed and inserted into mold cavity for injection molding to make the final 3D-MID product with electric circuits and mechanical structures.
In the first phase of printing ink on plastic films, it ran into an issue of high cost by using conductive silver ink paste for printing. In this research, a new process had been developed to increase the conductivity and lowered the cost by using conductive ink with electroplating process. Experiment results showed that after adding 20% of conductive carbon black, the resistance was 104 for printed lines of 0.9mm in width 40mm in length on PC films. The resistance dropped to 1.3 if treated with electroplating.
The issue of phase 2 was the deformation of the plastic films during thermoforming because of the high temperature of punch and die. The film was then deformed by tensile stress and the printed circuits were distorted. A semispherical thermoforming die with a diameter of 100 mm had been developed for the study. PC films with 0.178 mm thick were used to investigate the transformation of 2D electric circuits to 3D surface and the mapping from 3D to 2D. The experiment results showed that the deformation is sever along the sides. The deformation ratio from the experiment was 47.6% versus 49.4% from the simulation of deformation model. The errors of the deformation model were 10.3 & 5.8% in X- & Y- directions; respectively, while the errors of T-SIM, a commercially available deformation model, were 17.2 & 20.0% in X- & Y- directions, respectively.
The challenge was burrs on the cutting edge of the plastic films in phase 3 for trimming. A trimming die was developed to study the phenomenon with PC films of 1 mm thick. The results showed that there were four distinctive areas in the cross section of film cutting edge (1) Roll-over; (2) Shear zone or burnish; (3) Rupture zone or fracture; (4) Burr. There were always burrs of 63±17.4 m long on PC-film edges after trimming. The burr’s length increased with film temperature or the clearance between die and film. When the clearance became small, the zones of burnish and fracture had bigger portion. If it got large, the zones of burnish and fracture became narrow.
In phase 4, there were warpage of the plastic films during heating and cooling because of the difference of surface temperatures. The product was then hard to assemble. A round-plate die and 80% PC & 20% ABS had been used to study the effect. PC films of 0.178 mm was inserted in mold cavity for injection molding. Control of the mold temperature was the major factor that affected the warpage. The experiment results showed that material temperature of 250℃ would cause short shots and the worst warpage of 3.2 mm. Warpage was improved to 0.63 mm if mold temperature dropped to 90℃.
[1] J. Franke, “Räumliche elektronische Baugruppen (3D-MID) -- Werkstoffe, Herstellung, Montage und Anwendungen für spritzgengossene Schaltungsträger, ” Carl Hanser Verlag, pp. 2, 2013.
[2] “Printed circuit board, ” http://en.wikipedia.org/wiki/Printed_circuit_board
[3] J. Franke, “Integrierte Entwicklung neuer Produkt-und Produktionstechnologien für räumliche spritzgegossene Schaltungsträger (3D-MID), ”Carl Hanser Verlag, 1995.
[4] K. Feldmann, “Technologie 3D-MID -- Räumliche elektronische Baugruppen -- Herstel- lungsverfahren, Gebrauchsanforderungen, Materialkennwerte, ”Carl Hanser Verlag, pp. 2-10, 2004.
[5] “HARTING AG Mitronics, ” http://www.lpkf.com
[6] “TRW, ” http://www.lpkf.com
[7] J. Gausemeier, “Integrierte Entwicklung räumlicher elektronischer Baugruppen, ” Carl Hanser Verlag, 2006.
[8] R. Meier, “Strategien für einen produktorientierten Einsatz räumlicher spritzgegossener Schaltungsträger (3D-MID) , ”Meisenbach Verlag, 2002.
[9] F. Pöhlau, “Entscheidungsgrundlagen zur Einührung räumlicher spritzgegossener Schaltungsträger (3D-MID) , ”Meisenbach Verlag, 1999.
[10] K. Feldmann and F. Pöhlau, “MID in the Automotive Industry - Potentials, Benefits and Applications, ”Twenty-Second IEEE/CPMT Electronics Manufacturing Technology Symposium, pp. 76-81, 1998.
[11] A. Islam, H.N. Hansen, P.T. Tang, J. Sun , “Process chains for the manufacturing of moulded interconnect devices, ”The International Journal of Advanced Manufacturing Technology, vol.42, pp.831-841, 2009.
[12] A. Islam, H.N. Hansen, “Two component injection moulding: Present and future perspectives, ”Society of Plastic Engineers: Plastic Research Online, 1, 2009.
[13] J. Y. Chen, “Two-component injection molding of molded interconnect devices, ” Master, National Cheng Kung University, Tainan, Taiwan, 2011.
[14] C. H. Lee, “Study on Preparation and Properties of Conductive Fibers and Ink thereof, ”Master, National Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan, 2013.
[15] C.C. Yang, “The Study on Nano Dispersed Process and Rheological of Electrical Conductivity Carbon Black Matrix, ”Master, National Taipei University of Technology, Taipei, Taiwan, 2008.
[16] L.H. Li, L.X.MO, J.Ran and Z.Q.Xin, “Conductive Ink and Its Application Technology Progress, ”Imaging Science and Photochemistry, Vol. 32 NO.4, pp393~401, 2014.
[17] S. T. Huang, “Study on the Characteristics of Thermoforming for PC Film, ”Master, Yuan Christian University, Chung Li, Taiwan, 2004.
[18] H. Xu and D. O. Kazmer, “Tight Tolerance Thermoforming, ”International polymer processing, vol.16, pp.208-215, 2001.
[19] H. Xu and D. O. Kazmer, “Thermoforming shrinkage prediction, ”polymer engineering and science, vol. 41, pp.1553-1563, 2001.
[20] C.H. Chang, “Improvement Of Surface Crack Phenomena For Punching On The Fiber Reinforced Plastic Based On Taguchi Method, ”Master, Feng Chia University, Taichung, Taiwan, 2011.
[21] B.P.P.A. Gouveia, J.M.C. Rodrigues and P.A.F. Martins, “Ductile fracture in metalworking: experimental and, theoretical research, ” Journal of Materials Processing Technology, vol. 101, pp.52-63,2000.
[22] C. Husson, J.P.M. Correia, L. Daridon, S. Ahzi, “Finite elements simulations of thin copper sheets blanking: Study of blanking parameters on sheared edge quality”, Journal of Materials Processing Technology, vol. 199, pp.74–83, 2008.
[23] Etienne Taupin, Jochen Breitling, Wei-Tsu Wu, and Taylan Altan, “Material fracture and burr formation in blanking results of FEM. simulations and comparison with experiments”, Journal of Materials Processing Technology, vol. 59, pp.68-78,1996.
[24] M. S. Jacques, “An Anal ysis of Thermal Warpage in Injection Molded Flat Parts Due to Unbalanced Cooling, ”Polymer Engineering and Science, Vol. 22, No. 4, pp. 241~247, 1982.
[25] K. J. Chang, “Multi-Component Molding (MCM) , ”Master, National Yunlin University of Science and Technology, Yunlin, Taiwan, 2007.
[26] K. K. Tamma , B. L. Dowler , and S. B. Railkar , “C omputer Aided Applications to Injection Molding: Transfinite/Finite Element Thermal/Stress Response Formulations, ” Polymer Engineering and Science, Vol. 28, No. 7, pp. 421-428, 1988.
[27] K. K. Tamma , an d S. B. Railkar, “Evaluation of Residual Thermall y Induced Stresses in the Cooling of polymer Melt Via Transfinite Element Computat ions, ”Polymer Engineering and Science, Vol. 29, No. 2, pp. 100-106, 1989.
[28] W. C. Bushko and V. K. Stokes, "The Effects o f Differential Mold-Surface Temperatures on the Warpage of Packed Injection-Molded Parts, ”SPE ANTEC Tech, pp. 506~512, 1994.
[29] K. M. B. Jansen, D. J . V. Dijk and M. H. Huesselman, “Effect of Processi ng Conditions on Shrinkage in In jection Molding, ”Polymer Engineering and Science, Vol. 38, No. 5, pp. 838-846, 1998.
[30] N. Santhanam an d K. K. Wang, “A Theoretical and Experimental 105 Investigation of Warpage in In ject ion Molding, ”SPE ANTEC Tech, pp. 270~273, 1990.
[31] H. L. Chen, “Study of the Influence of Film Heat Transfer Retardation on the Warpage of In Mold Roller Injection Molding, ”Doctor, Yuan Christian University, Chung Li, Taiwan, 2010.
[32] Yun-Cheng Chang, RU-NAN Hu and Rong Xiang, “ Plating Manual, ” National Defense Industry Press, Beijing, pp706-722, 1997.
[33] Yun-De Jia, “Machine Vision, ” Science Press, Beijing, chapter13 pp7-8, 2000.
[34] Xhian-Yu Juan, “Study on the Operating Parameters of Fine Gear Blanking Process, ” Master, National Taipei University of Technology, Taipei, Taiwan, 2008.
[35] Xin Wu, Hamed Bahmanpour, Ken Schmid, “Characterization of mechanically sheared edges of dual phase steels, ” Journal of Materials Processing Technology, vol. 212, pp1209– 1224, 2012.
[36] Shihi-I Hsu,“Punch Wear Analysis and Improvementfor IC Leadframe Dam-bar Cutting Process, ”Master, Feng Chia University, Taichung, Taiwan, 2008.
[37] D. Brokken, W.A.M. Brekelmans, F.P.T. Baaijens, “Predicting the shape of blanked products: a finite element approach,” Journal of Materials Processing Technology, vol.103, pp51-56, 2000.
[38] Mancang Song and Kehui Yan, “Present Situations of Numerical Simulation Technology for Thin Wall Injection Molding,” Plastics Science and Technology, vol.34, pp51-54, 2006.
[39] Yi-Chia Wu, “Investigate optimum process parameters of thewarpage in injection molding products with tonercartridge shell plastic by Taguchi method, ”Master, Feng Chia University, Taichung, Taiwan, 2013.
校內:立即公開