| 研究生: |
詹欣頤 Jhan, Sin-Yi |
|---|---|
| 論文名稱: |
利用還原胺化反應結合液相層析質譜法來分析蛋白質藥物上的離胺酸之溶劑可接觸性 Reductive amination coupled with LC-MS for revealing solvent accessibility towards lysine residues of therapeutic proteins |
| 指導教授: |
陳淑慧
Chen, Shu-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 蛋白質高階結構 、還原胺化反應 、溶劑可接觸性 |
| 外文關鍵詞: | Protein higher order structure, reductive amination, solvent accessibility |
| 相關次數: | 點閱:96 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著蛋白質藥物的興起,尤其是利用抗體來攜帶小分子藥物,更使得藥物發展有很大的躍進,而對於藥物的效用與品質上的監管,務必得從蛋白質的高階結構來探討,才能確保其活性與功能。目前有文獻提出利用標記方法結合質譜來分析蛋白質結構,像是氫氘交換質譜、氫氧自由基腳印拓取(Hydroxyl radical footprinting)等等,都能用來分析蛋白質其高階結構特性,或是應用在偵測蛋白質與配體鍵結的區域與活性,在氫氘交換質譜中,可以較為廣泛的分析各個胺基酸結構資訊,但只限於胜肽骨架,而不能了解胺基酸側鏈的變化,因此本篇利用還原胺化反應針對帶有胺基的N端與離胺酸(Lysine)的蛋白質進行標記,根據不同的反應時間與還原劑反應濃度,進行標記後再將抗體還原成重鏈、輕鏈,並以液相層析分離進入質譜,能夠初步判斷還原胺化反應對蛋白質的標記數量,可以發現二甲基標記在短時間內就能達到較高的反應效率;另外將標記過的蛋白質以由下而上的質譜方法來處理成多段胜肽,同樣以液相層析分離來簡化數據的複雜度,可以進一步分析抗體上個別的離胺酸修飾程度,並且在此篇中能觀察到抗體上大部分的離胺酸位點,也藉此判斷其與溶液的接觸程度。除此之外,在本篇中同時針對原始狀態的與加熱過的蛋白質進行標記,以比較蛋白質經過加熱後其結構的變化,發現加熱過後蛋白質可能失去摺疊,而使離胺酸更加裸露,而當加熱時間變長時,也能發現某些位點可能是聚集的位置,因此經由二甲基的標記也能了解離胺酸在加熱後發生的改變。
Antibody-based protein drugs are under intensive development by pharmaceutical industries in recent years. The higher order structure (HOS) and exposed active sites of proteins may affect the drug stability and efficacy. H/D exchange is a popular MS-based method to characterize HOS of proteins. However, the data revealed by H/D exchange are mainly for the dynamics of the peptide backbone and do not give information about the structure of side chain residues. Here, we applied stable isotope dimethyl labeling method towards surface lysine residues of a protein drug and coupled the labeling method with both the intact protein measurement and bottom-up based MS approach to characterize the reactivity and solvent accessibility of lysine residues on proteins. By systematic studies of the reaction time and the concentration of reactants, we showed the labeling is rapid with high yield, allowing the accessment of a wide range of reactivity of almost all lysine residues of an antibody drug. We expect this method will be a very useful complementary approach to H/D exchange for resolving HOS of proteins by LC-MS.
1. Lerner, R. A., Combinatorial antibody libraries: new advances, new immunological insights. Nat Rev Immunol 2016, advance online publication.
2. Smith, A. J., New horizons in therapeutic antibody discovery: opportunities and challenges versus small-molecule therapeutics. Journal of biomolecular screening 2015, 20 (4), 437-53.
3. Bouchard, H.; Viskov, C.; Garcia-Echeverria, C., Antibody-drug conjugates-a new wave of cancer drugs. Bioorganic & medicinal chemistry letters 2014, 24 (23), 5357-63.
4. Perez, H. L.; Cardarelli, P. M.; Deshpande, S.; Gangwar, S.; Schroeder, G. M.; Vite, G. D.; Borzilleri, R. M., Antibody-drug conjugates: current status and future directions. Drug discovery today 2014, 19 (7), 869-81.
5. Lambert, J. M.; Chari, R. V. J., Ado-trastuzumab Emtansine (T-DM1): An Antibody–Drug Conjugate (ADC) for HER2-Positive Breast Cancer. Journal of Medicinal Chemistry 2014, 57 (16), 6949-6964.
6. McCombs, J. R.; Owen, S. C., Antibody drug conjugates: design and selection of linker, payload and conjugation chemistry. The AAPS journal 2015, 17 (2), 339-51.
7. Agarwal, P.; Bertozzi, C. R., Site-Specific Antibody–Drug Conjugates: The Nexus of Bioorthogonal Chemistry, Protein Engineering, and Drug Development. Bioconjugate Chemistry 2015, 26 (2), 176-192.
8. Fitzgerald, M. C.; West, G. M., Painting proteins with covalent labels: what's in the picture? Journal of the American Society for Mass Spectrometry 2009, 20 (6), 1193-206.
9. Vivian, J. T.; Callis, P. R., Mechanisms of tryptophan fluorescence shifts in proteins. Biophysical journal 2001, 80 (5), 2093-109.
10. Konermann, L.; Vahidi, S.; Sowole, M. A., Mass spectrometry methods for studying structure and dynamics of biological macromolecules. Analytical chemistry 2014, 86 (1), 213-32.
11. Rajabi, K.; Ashcroft, A. E.; Radford, S. E., Mass spectrometric methods to analyze the structural organization of macromolecular complexes. Methods 2015, 89, 13-21.
12. Vandermarliere, E.; Stes, E.; Gevaert, K.; Martens, L., Resolution of protein structure by mass spectrometry. Mass Spectrometry Reviews 2015, n/a-n/a.
13. Chorev, D. S.; Ben-Nissan, G.; Sharon, M., Exposing the subunit diversity and modularity of protein complexes by structural mass spectrometry approaches. Proteomics 2015, 15 (16), 2777-91.
14. Politis, A.; Borysik, A. J., Assembling the pieces of macromolecular complexes: Hybrid structural biology approaches. Proteomics 2015, 15 (16), 2792-803.
15. Lee, J. J.; Park, Y. S.; Lee, K. J., Hydrogen-deuterium exchange mass spectrometry for determining protein structural changes in drug discovery. Archives of pharmacal research 2015, 38 (10), 1737-45.
16. Majumdar, R.; Middaugh, C. R.; Weis, D. D.; Volkin, D. B., Hydrogen-deuterium exchange mass spectrometry as an emerging analytical tool for stabilization and formulation development of therapeutic monoclonal antibodies. Journal of pharmaceutical sciences 2015, 104 (2), 327-45.
17. Gautier, V.; Boumeester, A. J.; Lossl, P.; Heck, A. J., Lysine conjugation properties in human IgGs studied by integrating high-resolution native mass spectrometry and bottom-up proteomics. Proteomics 2015, 15 (16), 2756-65.
18. Nury, C.; Redeker, V.; Dautrey, S.; Romieu, A.; van der Rest, G.; Renard, P. Y.; Melki, R.; Chamot-Rooke, J., A novel bio-orthogonal cross-linker for improved protein/protein interaction analysis. Analytical chemistry 2015, 87 (3), 1853-60.
19. Tran, B. Q.; Goodlett, D. R.; Goo, Y. A., Advances in protein complex analysis by chemical cross-linking coupled with mass spectrometry (CXMS) and bioinformatics. Biochimica et biophysica acta 2016, 1864 (1), 123-9.
20. Rand, K. D.; Zehl, M.; Jorgensen, T. J., Measuring the hydrogen/deuterium exchange of proteins at high spatial resolution by mass spectrometry: overcoming gas-phase hydrogen/deuterium scrambling. Accounts of chemical research 2014, 47 (10), 3018-27.
21. Pirrone, G. F.; Iacob, R. E.; Engen, J. R., Applications of Hydrogen/Deuterium Exchange MS from 2012 to 2014. Analytical chemistry 2015, 87 (1), 99-118.
22. Arora, J.; Hickey, J. M.; Majumdar, R.; Esfandiary, R.; Bishop, S. M.; Samra, H. S.; Middaugh, C. R.; Weis, D. D.; Volkin, D. B., Hydrogen exchange mass spectrometry reveals protein interfaces and distant dynamic coupling effects during the reversible self-association of an IgG1 monoclonal antibody. mAbs 2015, 7 (3), 525-39.
23. Pan, L. Y.; Salas-Solano, O.; Valliere-Douglass, J. F., Antibody structural integrity of site-specific antibody-drug conjugates investigated by hydrogen/deuterium exchange mass spectrometry. Analytical chemistry 2015, 87 (11), 5669-76.
24. Zhang, A.; Hu, P.; MacGregor, P.; Xue, Y.; Fan, H.; Suchecki, P.; Olszewski, L.; Liu, A., Understanding the Conformational Impact of Chemical Modifications on Monoclonal Antibodies with Diverse Sequence Variation Using Hydrogen/Deuterium Exchange Mass Spectrometry and Structural Modeling. Analytical chemistry 2014, 86 (7), 3468-3475.
25. Maleknia, S. D.; Downard, K. M., Advances in radical probe mass spectrometry for protein footprinting in chemical biology applications. Chemical Society Reviews 2014, 43 (10), 3244-3258.
26. Watson, C.; Sharp, J. S., Conformational analysis of therapeutic proteins by hydroxyl radical protein footprinting. The AAPS journal 2012, 14 (2), 206-17.
27. Hao Zhang, B. C. G., Lisa M. Jones, Ilan Vidavsky, and Michael L. Gross*, Fast Photochemical Oxidation of Proteins for Comparing Structures of Protein-Ligand Complexes: The Calmodulin-Peptide Model System. Anal. Chem. 2011, 83 (1).
28. Deperalta, G.; Alvarez, M.; Bechtel, C.; Dong, K.; McDonald, R.; Ling, V., Structural analysis of a therapeutic monoclonal antibody dimer by hydroxyl radical footprinting. mAbs 2013, 5 (1), 86-101.
29. Xu, G.; Chance, M. R., Hydroxyl radical-mediated modification of proteins as probes for structural proteomics. Chemical reviews 2007, 107 (8), 3514-3543.
30. Kaur, P.; Tomechko, S. E.; Kiselar, J.; Shi, W.; Deperalta, G.; Wecksler, A. T.; Gokulrangan, G.; Ling, V.; Chance, M. R., Characterizing monoclonal antibody structure by carboxyl group footprinting. mAbs 2015, 7 (3), 540-52.
31. Borotto, N. B.; Zhou, Y.; Hollingsworth, S. R.; Hale, J. E.; Graban, E. M.; Vaughan, R. C.; Vachet, R. W., Investigating Therapeutic Protein Structure with Diethylpyrocarbonate Labeling and Mass Spectrometry. Analytical chemistry 2015, 87 (20), 10627-34.
32. Mendoza, V. L.; Vachet, R. W., Protein Surface Mapping Using Diethylpyrocarbonate with Mass Spectrometric Detection. Analytical chemistry 2008, 80 (8), 2895-2904.
33. Hsu, J.-L.; Huang, S.-Y.; Chow, N.-H.; Chen, S.-H., Stable-Isotope Dimethyl Labeling for Quantitative Proteomics. Analytical chemistry 2003, 75 (24), 6843-6852.
34. Hsu, J. L.; Huang, S. Y.; Chen, S. H., Dimethyl multiplexed labeling combined with microcolumn separation and MS analysis for time course study in proteomics. Electrophoresis 2006, 27 (18), 3652-60.
35. Boersema, P. J.; Raijmakers, R.; Lemeer, S.; Mohammed, S.; Heck, A. J. R., Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat. Protocols 2009, 4 (4), 484-494.
36. Altelaar, A. F.; Frese, C. K.; Preisinger, C.; Hennrich, M. L.; Schram, A. W.; Timmers, H. T.; Heck, A. J.; Mohammed, S., Benchmarking stable isotope labeling based quantitative proteomics. Journal of proteomics 2013, 88, 14-26.
37. Gimenez, E.; Sanz-Nebot, V.; Rizzi, A., Relative quantitation of glycosylation variants by stable isotope labeling of enzymatically released N-glycans using [12C]/[13C] aniline and ZIC-HILIC-ESI-TOF-MS. Analytical and bioanalytical chemistry 2013, 405 (23), 7307-19.
38. Shen, P.-T.; Hsu, J.-L.; Chen, S.-H., Dimethyl Isotope-Coded Affinity Selection for the Analysis of Free and Blocked N-Termini of Proteins Using LC-MS/MS. Anal. Chem. 2007, 79 (24), 11.
39. Huang, S. Y.; Chen, S. F.; Chen, C. H.; Huang, H. W.; Wu, W. G.; Sung, W. C., Global disulfide bond profiling for crude snake venom using dimethyl labeling coupled with mass spectrometry and RADAR algorithm. Analytical chemistry 2014, 86 (17), 8742-50.
40. Bondt, A.; Rombouts, Y.; Selman, M. H.; Hensbergen, P. J.; Reiding, K. R.; Hazes, J. M.; Dolhain, R. J.; Wuhrer, M., Immunoglobulin G (IgG) Fab glycosylation analysis using a new mass spectrometric high-throughput profiling method reveals pregnancy-associated changes. Molecular & cellular proteomics : MCP 2014, 13 (11), 3029-39.
41. Bennett, K. L.; Smith, S. V.; Truscott, R. J. W.; Sheil, M. M., Monitoring Papain Digestion of a Monoclonal Antibody by Electrospray Ionization Mass Spectrometry. Analytical Biochemistry 1997, 245 (1), 17-27.
42. Ferrara, N.; Hillan, K. J.; Gerber, H.-P.; Novotny, W., Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 2004, 3 (5), 391-400.
43. Ferrara, N.; Hillan, K. J.; Novotny, W., Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochemical and biophysical research communications 2005, 333 (2), 328-35.
44. Hurwitz , H.; Fehrenbacher , L.; Novotny , W.; Cartwright , T.; Hainsworth , J.; Heim , W.; Berlin , J.; Baron , A.; Griffing , S.; Holmgren , E.; Ferrara , N.; Fyfe , G.; Rogers , B.; Ross , R.; Kabbinavar , F., Bevacizumab plus Irinotecan, Fluorouracil, and Leucovorin for Metastatic Colorectal Cancer. New England Journal of Medicine 2004, 350 (23), 2335-2342.
45. Miller , K.; Wang , M.; Gralow , J.; Dickler , M.; Cobleigh , M.; Perez , E. A.; Shenkier , T.; Cella , D.; Davidson , N. E., Paclitaxel plus Bevacizumab versus Paclitaxel Alone for Metastatic Breast Cancer. New England Journal of Medicine 2007, 357 (26), 2666-2676.
46. Garcia, A.; Singh, H., Bevacizumab and ovarian cancer. Therapeutic Advances in Medical Oncology 2013, 5 (2), 133-141.
47. Rosenberg, A. S., Effects of protein aggregates: An immunologic perspective. The AAPS journal 2006, 8 (3), E501-E507.
48. Joubert, M. K.; Hokom, M.; Eakin, C.; Zhou, L.; Deshpande, M.; Baker, M. P.; Goletz, T. J.; Kerwin, B. A.; Chirmule, N.; Narhi, L. O.; Jawa, V., Highly aggregated antibody therapeutics can enhance the in vitro innate and late-stage T-cell immune responses. The Journal of biological chemistry 2012, 287 (30), 25266-79.
49. Carpenter, J. F.; Randolph, T. W.; Jiskoot, W.; Crommelin, D. J.; Middaugh, C. R.; Winter, G.; Fan, Y. X.; Kirshner, S.; Verthelyi, D.; Kozlowski, S.; Clouse, K. A.; Swann, P. G.; Rosenberg, A.; Cherney, B., Overlooking subvisible particles in therapeutic protein products: gaps that may compromise product quality. Journal of pharmaceutical sciences 2009, 98 (4), 1201-5.
50. Struble, E. B.; Cipollo, J. F.; Kimchi-Sarfaty, C.; Sauna, Z. E.; Ragheb, J. A.; Marszal, E., Higher-Order Structure and Protein Aggregate Characterization of Protein Therapeutics: Perspectives from Good Manufacturing Practices and Regulatory Guidance. In Biophysics for Therapeutic Protein Development, Narhi, O. L., Ed. Springer New York: New York, NY, 2013; pp 261-281.
51. Ratanji, K. D.; Derrick, J. P.; Dearman, R. J.; Kimber, I., Immunogenicity of therapeutic proteins: influence of aggregation. Journal of immunotoxicology 2014, 11 (2), 99-109.
52. Telikepalli, S. N.; Kumru, O. S.; Kalonia, C.; Esfandiary, R.; Joshi, S. B.; Middaugh, C. R.; Volkin, D. B., Structural Characterization of IgG1 mAb Aggregates and Particles Generated Under Various Stress Conditions. Journal of pharmaceutical sciences 2014, 103 (3), 796-809.
53. Fathallah, A. M.; Chiang, M.; Mishra, A.; Kumar, S.; Xue, L.; Middaugh, R.; Balu-Iyer, S. V., The Effect of Small Oligomeric Protein Aggregates on the Immunogenicity of Intravenous and Subcutaneous Administered Antibodies. Journal of pharmaceutical sciences 2015, 104 (11), 3691-702.
54. Roberts, C. J., Therapeutic protein aggregation: mechanisms, design, and control. Trends in biotechnology 2014, 32 (7), 372-80.
55. Wang, W.; Nema, S.; Teagarden, D., Protein aggregation--pathways and influencing factors. International journal of pharmaceutics 2010, 390 (2), 89-99.
56. Vermeer, A. W.; Norde, W., The thermal stability of immunoglobulin: unfolding and aggregation of a multi-domain protein. Biophysical journal 2000, 78 (1), 394-404.
57. Ionescu, R. M.; Vlasak, J.; Price, C.; Kirchmeier, M., Contribution of variable domains to the stability of humanized IgG1 monoclonal antibodies. Journal of pharmaceutical sciences 2008, 97 (4), 1414-26.
58. Zhang, A.; Singh, S. K.; Shirts, M. R.; Kumar, S.; Fernandez, E. J., Distinct aggregation mechanisms of monoclonal antibody under thermal and freeze-thaw stresses revealed by hydrogen exchange. Pharmaceutical research 2012, 29 (1), 236-50.
59. Zhang, J.; Xin, L.; Shan, B.; Chen, W.; Xie, M.; Yuen, D.; Zhang, W.; Zhang, Z.; Lajoie, G. A.; Ma, B., PEAKS DB: de novo sequencing assisted database search for sensitive and accurate peptide identification. Molecular & cellular proteomics : MCP 2012, 11 (4), M111.010587.
校內:2021-09-01公開