簡易檢索 / 詳目顯示

研究生: 鄭其昌
Cheng, Chi-chang
論文名稱: 多原子分子理想氣體擬似穩態馬赫反射之三震波點路徑角理論多重解分析
A Three-Shock Theoretical Analysis of Multiply Possible Triple-point Trajectory Angles of Pseudo-Steady Mach Reflections of Perfect Polyatomic Gases
指導教授: 劉中堅
Liu, Jong-Jian
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 97
中文關鍵詞: 擬似穩態馬赫反射三震波
外文關鍵詞: three-shock, pseudo-steady Mach reflections
相關次數: 點閱:63下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文首先具體地以三個方法說明,擬似穩態馬赫反射流場之三震波解對正 存在有第一與第二個 解;對負sitaw 存在有第一、第二與第三個kai解,此三個方法係傳統擬似穩態馬赫反射流場之三震波理論、穩態馬赫反射流場轉換擬似穩態馬赫反射流場之十階多項式公式理論及擬似穩態馬赫反射流場之16階多項式公式理論,然後我們以此三種方法對4個不同的弱與強之擬似穩態馬赫反射流場入射震波馬赫數(Ms)作系列的(p-sita)震波極圖解,其中吾人主要變化入射震波角(phi1)值,自入射震波下游音速M1=1之波角到逆馬赫反射解域( i.e.有系統地變化sitaw),有系統地討論多原子分子理想氣體(gamma=1.093)之擬似穩態馬赫反射流場三震波點路徑角(kai)非線性性質的多重解現象,並分析此多重kai解之alpha1、bata1 或bata2 之根性質屬性的問題。為了說明正sitaw (負sitaw )存在著第一與第二個(第一、第二與第三個)kai解的原因,吾人將擬似穩態馬赫反射流場三震波理論解固定Ms系列之計算結果表達於(phi1,sitaw)圖上,藉此(phi1,sitaw )圖說明global (整體)的正sitaw (負sitaw )之三震波理論多重解存在著第一與第二個(第一、第二與第三個)kai解的原理,最後應用吾人對於kai角多重解的了解,修正曾(2005)已定義擬似穩態馬赫反射流場之sitaw無法定義區,並確定其m值(震波極圖上大於D2點上之交點的數目)為3。

    Three different methods are presented to theoretically calculate the first and second triple point trajectory angles (kai) of pseudo-steady Mach reflections (PMR) of positive reflecting wedge angles (sitaw) and calculate the first, second and third kai's of PMR of negative sitaw . They are (1) the traditional PMR three-shock theory solving 12 nonlinear algebraic conservation equations of the incident, reflected and Mach shocks and pressure and deflection slipstream compatibility equations along with a (usually normal straight) Mach stem/wall boundary condition; (2) the governing tenth degree polynomial algebraic equation of SMR transformed from PMR; (3) the 16th degree polynomial algebraic equation of PMR. Series of systematic examinations of global three-shock multiple kai solutions are carried out for four different incident shock Mach numbers (Ms) of perfect polyatomic gases (i.e.gamma=1.093) by primarily varying the incident shock angles (phi1) from the sonic forbidden condition downstream of the incident shock (i.e.M1=1) to phi1's of regions of inverse PMR using these three methods.alpha1、bata1 and bata2 root characteristics of multiply possible kai solutions of a given +sitaw or a given -sitaw are then investigated. In order to provide explanations for the existences of these multiply possible kai angles for a given PMR problem of sitaw, global three-shock theoretically calculated results, as phi1 systematically varying from M1=1 to the incident Mach angle condition for a given Ms are plotted on the (phi1,sitaw) plane, where three different patterns of global three-shock solution curves are identified for different ranges of Ms. Finally, based on the understanding of single or multiple kai solutions of a PMR problem of a given sitaw, we are able to correct the mistakenly classified undefined regime of the global three-shock PMR solutions of perfect polyatomic gases on the (Ms,sitaw) plane.

    摘要……………………………………………………………………I Abstract…………………………………………………………...II 致謝…………………………………………………………………….IV 目錄…………………………………………………………………...V 圖目錄……………………………………………………………..VIII 符號說明…………………………………………………………....XI 第一章 緒論..............................................1 第二章 擬似穩態馬赫反射流場三震波理論介紹 ...............5 2-1 擬似穩態馬赫反射流場三震波理論分析...................6 2-1-1 擬似穩態馬赫反射流場之三震波理論...................6 2-1-2 擬似穩態馬赫反射流場三震波理論多重 解表達於壓力與轉折角(p-sita)平面上之震波極圖解分析.........................12 2-2 穩態馬赫反射流場三震波十階多項式理論.................14 2-3 擬似穩態馬赫反射流場與穩態馬赫反射流場之間相互的對應關係.......................................................18 2-4 給予gamma、Ms、sitaw 之擬似穩態馬赫反射流場的條件下,如何(判斷)求得(馬赫反射)交點解的性質為alpha1、bata1 或bata2 中的那一個...............................................20 2-4-1 應用擬似穩態馬赫反射流場三震波理論求得已知gamma、Ms 與sitaw 初始條件下之解...................................21 2-4-2 應用穩態馬赫反射流場三震波之十階多項式理論求得擬似穩態馬赫反流場之解.........................................22 2-4-3 應用擬似穩態馬赫反射流場之十六階多項式公式求得擬似穩態馬赫反射流場之解......................................23 2-5 應用擬似穩態馬赫反射流場之十六階多項式公式直接計算及判斷正(負) 所對應的第一、第二或第三個kai 解..............23 2-6應用2-4-1方法配合(p-sita)震波極圖解計算正 馬赫反射流場三震波解存在之第一與第二個kai 解..........................25 2-7 應用2-4-1方法配合(p-sita)震波極圖解計算負馬赫反射流場三震波解存在之第一第二與第二個kai 解......................28 第三章 多原子分子理想氣體(gamma=1.093) 擬似穩態馬赫反射流場三震波理論 角多重解分析討論.......................................................33 3-1 擬似穩態馬赫反射流場之(p-sita)震波極圖解對Ms =1.05系列分析.....................................................34 3-2 擬似穩態馬赫反射流場之(p-sita)震波極圖解對 Ms=1.4系列分析.......................................................46 3-3 擬似穩態馬赫反射流場之(p-sita)震波極圖解對 Ms=1.8系列分析.......................................................56 3-4 擬似穩態馬赫反射流場之(p-sita)震波極圖解對Ms =2.5系列分析.....................................................66 第四章 多原子分子理想氣體gamma=1.093擬似穩態馬赫反射流場三震波理論kai 角多重解之解域分析討論.......................73 4-1 三震波理論對應(Ms,sitaw)解域平面於(Ms,kai)平面上的第一個kai解之圖上各不同性質曲線分析..........................74 4-2 三震波理論對應(Ms,sitaw)解域平面於(Ms,kai)平面上的第一個kai解之圖上特殊點作法及其特殊點分析…………………………79 4-2-1說明三震波理論對應(Ms,sitaw)解域平面於(Ms,kai)面上的第一個 解之圖上之不同性質曲線相交時之特殊點作法………………79 4-2-2 三震波理論對應(Ms,sitaw)解域平面於(Ms,kai)面上的第一個kai解之圖上特殊點分析………………..…………………………81 4-3應用擬似穩態馬赫反射流場三震波理論解於(phi1,sitaw)平面上分析正(負) 值所對應的 解為第一個kai解、第二個kai解或第三個 kai解....................................................84 4-4 修正gamma=1.093擬似穩態馬赫反射流場三震波理論解於(Ms,sitaw)平面之解域圖上之sitaw無法定義區................89 第五章 結論……………………………………………………………92 參考文獻……………………………………………………………….95 自述

    Ben-Dor, G. and Glass, I.I., “Domains and boundaries of nonstationary oblique shock wave reflexions. 1. Diatomic gas.“ J. Fluid Mech. Vol. 92, pp. 459-496 (1979).

    Ben-Dor, G., ”Shock Wave Reflection Phenomena,” Springer-Verlag, New York, (1992).

    Bleakney, W. and Taub, A.H., ”Interaction of shock waves. “ Rev. Mod. Phys.,Vol. 21 (1949).

    Colella, P. and Henderson, L.F., “The von Neumann paradox for the diffraction of weak shock waves.” J. Fluid Mech., Vol. 213, pp 71-94 (1990).

    Griffith, W.C., “Shock waves.” J. Fluid Mech., Vol.106, pp. 81-101 (1981).

    Henderson, L. F., ”On the Confluence of Three Shock Waves in a Perfect Gas, ” Aero. Quart., Vol. 15, pp. 181-197 (1964).

    Henderson, L. F., ”Regions and Boundaries for Diffracting Shock Wave Systems,” Z. Angew, Vol 67, pp. 1-14 (1987).

    Hunter, J., Brio. M., ”The von Neumann Paradox in Weak Shock Reflection,” J Fluid Mech., Vol. 422, pp. 193-205 (2000).

    Liu, J.J., ”Sound Wave Structures Downstream of Pseudo-Steady Weak and Strong Mach Reflections,” J. Fluid Mech., Vol. 324, pp. 309-332 (1996).

    Liu, J.J., ”A one-dimensional stream-tube interpretation of Liu’s revised three-shock theory for pseudo-steady Mach reflections,” The 23 rd International symposium on shock Wave, Fort Worth, Texas. USA (2001).

    Liu, J.J., Chuang, C.C., Chuang, H.W., ”Multiple Solutions of Steady Mach Reflections in Monatomic Gases,” The 19th Nat’l Conference on Mechanical Engineering, Yun-Lin, No. A5-004 (2002).

    Liu, J.J., "A map of multiplicity of perfect-gas three-shock theoretical solutions of steady Mach reflections in diatomic gases" The 5th International Workshop on Shock/Vortex Interactions, Kaohsiung, Taiwan, pp. 120-127 (2003).

    Liu, J.J., "A clarification to misconceptions regarding the von Neumann paradox of weak Mach reflections",” The 26th International Symposium on Shock Waves, Gottingen, Germany (2007).

    Liu, J.J., "A clarification to misconceptions of pseudo-steady Mach reflections",” The 26th International Symposium on Shock Waves, Gottingen, Germany (2007).

    M. Sun and K. Takayama “ Vorticity Prodution in shock diffraction “J. Fluid Mech., Vol. 478, pp. 237-256 (2003).

    von Neumann, J., “Oblique reflection of shocks”. Explos. Res Rep. No.12, Washington, DC (1943).

    Smith, L.G. “Photographic investigation of the reflection of plane shocks in air, “OSRD Rep.6721.Off. Sci. Res. Dev, Washington, DC, (1945).

    Zakharian AR, Brio M, Hunter JK, Webb GM ”The von Neumann paradox in weak shock reflection,” J. Fluid Mech., Vol. 422, pp. 193-205 (2000).

    曾國勇,「多原子分子理想氣體擬似穩態馬赫反射參震波理論之多重解分析」,國立成功大學工程科學系碩士論文,台南 (2005).

    黃致豪,「穩態馬赫反射參震波理論之流場性質分析」,國立成功大學工程科學系碩士論文,台南 (2006).

    下載圖示 校內:立即公開
    校外:2007-07-23公開
    QR CODE