| 研究生: |
林晉守 Lin, Chin-Shou |
|---|---|
| 論文名稱: |
以單剪試驗探討爐石含量對麥寮砂排水剪力強度之影響 Effects of Slag Content on Drained Shear Resistances of Slag-MLS mixed Soils under Simple Shear Conditions |
| 指導教授: |
張文忠
Chang, Wen-Jong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 單剪試驗 、轉爐石 、水中沉降法 、土壤孔隙參數 、抗剪強度 |
| 外文關鍵詞: | Simple shear test, BOF slag, Water pluviation, Pore parameters, Shear strength |
| 相關次數: | 點閱:93 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣為一海島型國家,因地理位置緣故,港口發展迅速,而港口之興建伴隨著港口淤泥堆積、周圍海岸線後退、海灘消失等問題,故港口疏浚作業及港口周圍實行養灘是為環境永續的重大課題。本研究以雲林麥寮區之麥寮港為例,利用麥寮港之疏浚泥沙添加轉爐石(Slag)作為更抗侵蝕、抗剪動之回填材料,轉爐石是為煉鋼工業之副產物,其具有高抗剪強度、比重大之特性。研究內容為將麥寮砂(Mai-Liao Sand, MLS)與轉爐石以不同配比均勻混合,以顆粒組構觀點計算土壤之孔隙參數,並以水中沉降法(Water pluviation)準備試體,利用壓密排水單剪試驗探討不同轉爐石配比對原有疏浚泥沙之物理與力學性質之影響;再以改良效果最佳之配比用層狀鋪灑轉爐石方式準備試體,探討均勻混合與層狀堆積之抗剪強度差異。其結果能驗證轉爐石作為混合改良回填材料之可行性,並提供一量化結果作為實際施作之參考。
Taiwan is an island-type country. Due to its geographical location, the port is developing rapidly. The construction of the port is accompanied by problems such as silt accumulation in the port, the retreat of the surrounding coastline, and disappearance of the beach. Therefore, the dredging operation of the port and sand fill works around the port are environmental sustainability issues. This study uses the dredged sediment from the Mai-Liao harbor to add the BOF slag as a more anti-erosion and shear-resistant backfill material. The BOF slag is the by-product of the steelmaking industry, which has a high shear resistance and specific. The research content is to uniformly mix the Mai-Liao Sand (MLS) and the BOF slag in different ratios, calculate the pore parameters of the soil from the viewpoint of particle structure and prepare the specimen by water pluviation. We use consolidation drainage simple shear test to investigate the influence of different BOF slag content on the physical and mechanical properties of the dredged sediment form Mai-Liao harbor. And we prepare the specimen by layering the BOF slag method to investigate the difference in shear resistance between uniformly mix method and layered method. The results verify the feasibility of the BOF slag as a hybrid modified backfill material and provide a quantitative result as a reference for field application.
1. 中鋼股份有限公司(2017) “轉爐石海事工程”
2. 王統立(2000)“高細料含量粉土細砂中CPT 之標定試驗”,國立交通大學土木工程系,碩士論文。
3. 林承翰(2016)“以分層控制標度槽探討基樁於飽和粉土質砂中之側推行為”,國立成功大學土木工程學系,碩士論文
4. 張嘉偉(1997)“圓錐貫入試驗在粉砂中之標定”,國立交通大學土木工程系,碩士論文。
5. 張瑾瑜(2013) “非飽和粉質土臨界狀態參數之試驗程序驗證”,碩士論文,國立成功大學土木工程研究所。
6. 葉事義(2015)“以邊界應力控制試驗平台探討基樁側推之行為”,國立成功大學土木工程學系,碩士論文。
7. 黃信博(2016)“應用非飽和單剪於降雨入滲引致淺層邊坡滑動模擬之研究”, 國立成功大學土木工程學系,碩士論文。
8. 趙慶宇(2015) “淺層非飽和邊坡破壞機制之研究”。碩士論文,國立成功大學土木工程研究所。
9. 劉全修(2008)“台灣中南部粉土質細砂的壓縮性”國立交通大學土木工程學系,碩士論文。
10. Airey, D. W. and D. M. Wood (1987) “An evaluation of direct simple shear tests on clay. ” Géotechnique 37, 25-35.
11. Amer, M., W. Kovacs and M. Aggour (1987). “Cyclic Simple Shear Size Effects. ” Journal of Geotechnical Engineering 113(7): 693-707.
12. ASTM D6528-07 (2007) “StandardTest Method for Consolidated Undrained Direct Simple Shear Testing of Cohesive Soils. ”
13. ASTM D7181-11 (2011). “Standard test method for consolidated drained triaxial compression test for soils ”
14. Bjerrum, L. and A. Landva (1966) “Direct Simple-Shear Tests on a Norwegian Quick Clay.” Geotechnique 16, 1-20.
15. Chang, W.J., Chang, C.W., Zeng, J.K., (2014a), “Liquefaction characteristics of gap-graded gravelly soils in Ko condition.” Soil Dynamic and Earthquake Engineering, 56, pp. 74-85.
16. Chang, W.J., Phantachang, T. (2016). “Effects of gravel content on shear resistance of gravelly soils. ” Engineering Geology, 207, 78-90.
17. Grognet, M. F. (2011). “The boundary conditions in direct simple shear tests:Developments for peat testing at low normal stress. ” Master, Delft University of Technology.
18. Høeg, K., Dyvik, R., Sandbaekken, G., (2000). “Strength of undisturbed versus reconstituted silt and silty sand specimens.” J. Geotech. Geoenviron. Eng. ASCE 126 (7), 606-617.
19. Honkanadavar, N. P., S. L. Gupta and M. Ratnam (2012). “Effect of particle size and confining pressure on shear strength parameter of rockfill materials .” Academic Research Journals (India) 1: 49-63.
20. Ishihara, K., (1993). “Liquefaction and flow failure during earthquakes.” Geotechnique 43 (3), 351-415.
21. Kirkpatrick , W. M. (1965). “Effects of grain size and grading on the shearing behavior of granular materials. ” 6th Int. Conf. on Soil Mechanics and Foundation Engineering.
22. Kjellman, W. (1951) “Testing The Shear Strength of Clay in Sweden.” Geotechnique 2, 225-232
23. Kuerbis, R., Negussey, D., and Vaid, Y.P., (1988), “Effect of gradation and fines content on the undrained response of sand. ” Hydraulic Fill Structures, Geotechnical Special Publication, No. 21 (ASCE), New York, pp. 330–345.
24. Lacasse, S., Dyvik, R., and Høeg, K., (1988), “Discussion on the behavior of normally consolidated clay as observed in undrained direct shear tests by Wroth (1987),” Géotechnique, 38, No. 1, pp. 144-146.
25. Lo Presti, D., Pedroni, S., Crippa, V., (1992). “Maximum dry density of cohesionless soils by pluviation and by ASTM D 4253-83: a comparative study.” Geotech. Test. J. ASTM 15 (2), 180-189.
26. Lambe, T.W., (1951). “Soil Testing for Engineers.” John Willy & Sons, Inc., New York.
27. Marachi, N. D. and H. B. Seed (1972). “Evaluation of Properties of Rockfill Materials. ” Journal of the Soil Mechanics and Foundations Division 98: 95-114.
28. Marsal, R. J. (1967). “Large-Scale Testing of Rockfill Materials." Journal of the Soil Mechanics and Foundations Division 93: 27-43.
29. Marsal, R. J. (1969). “Mechanical properties of rockfill and gravel materials. ” 7th. Inter. Confer. Soil Mech. Foundation Engng.
30. Oda, M. and J. Konishi (1974). “Rotation of principal stresses in granular material during simple shear.” Soils and Foundations 14(4):39-53.
31. Roscoe, K.H. (1953). “An apparatus for the application of simple shear to soil samples.” Third international conference on soil mechanics and foundation engineering, Zurich, Switzerland.
32. Roscoe, K. H., R. H. Basssett., E.R. Cole (1967). “Principal axes oberserved during simple shear of a sand. Geotech.” Conference, Oslo, Norway.
33. Shen, C. K., K. Sadigh and L. R. Herrmann (1977). “An analysis of NGI simple shear apparatus for cyclic soil test.” Dynamic Geotechnical Testing. A. S. f. T. a. Materials, Philadelphia, PA.
34. Thevanayagam, S. (1998), “Effect of fines and confining stress on undrained shear strength of silty sands.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 124, No. 6, pp. 479-491
35. Yamamuro, J. A. and Lade, P. V. (1999), “Experiments and modeling of silty sands susceptible to static liquefaction.” Mechanics of Cohesive- frictional Materials, 4, pp. 545-564
36. Vaid, Y.P., Sivathayalan, S., Stedman, D., (1999). “Influence of specimen-reconstituting method on the undrained response of sand.” Geotech. Test. J. ASTM 22 (3), 187-195
37. Vucetic, M., and Lacasee, S., (1982), “Specimen size effect in simple shear test.” Journal of the Geotechnical Engineering Division ASCE, 108(12), pp. 1567-1585.