| 研究生: |
楊善博 Yang, Shan-Bo |
|---|---|
| 論文名稱: |
以多頻譜高解析度衛星影像結合最佳半解析光學理論模式模擬台灣水庫透明度分佈圖 Integrating evolutionary optimization and ocean color semi-analytical model for mapping Secchi disk depth of inland water from high resolution multispectral satellite data |
| 指導教授: |
張智華
Chang, Chih-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 透明度 、生光模式 、沙奇盤深度物理模式 、半解析模式 、遙感探測 |
| 外文關鍵詞: | Transparency, Bio-optical model, Secchi disk depth physical model, Semi-analytical model, Remote sensing |
| 相關次數: | 點閱:153 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
量測沙奇盤深度為量化水體澄清度(透明度)最直接且快速的方式,也是優養判定的指標之一。國內被判定為優養化之水庫大多都是透明度太低,而改善透明度要從何種污染物著手卻僅仰賴透明度與水質的經驗關係,以卡爾森經驗式為例,若根據該式建議藉由改善葉綠素a來提高國內水庫的透明度,恐怕大多數水庫都無法得到令人滿意的結果。因此,本研究利用水體光學理論、水庫生光特性分析資料及最佳化方法,建立最適合國內22座水庫之透明度物理模式,以能準確解析水中光敏物質濃度、環境光場與透明度間的關係。此外,透過2005至2013年共2400筆國內水庫觀測資料與最佳化,本研究嘗試找出透明度物理模式中兩個主要衛星影像參數(光衰減係數與遙測反射率)的最適波段,並運用在Landsat 8跟Sentinel 2A兩個中解析度衛星影像上,比較兩個影像資料,並探討遙測透明度與其他水質的關係。
在建立水庫透明度物理模式方面,本研究建立一套半解析透明度(SA-SD)模式,其模式中包含了生光模式、輻射傳輸模式、準解析模式和新透明度物理模式,輸入過去環保署十年大量的水庫水質採樣資料,選出生光模式中九個係數為決策變數:(1) 以線性迴歸模式連結懸浮固體物濃度(SS)與無機顆粒吸收係數adm(400)、連結總溶解性有機碳(TOC)與有色溶解性有機物質(CDOM)吸收係數ag(440),以及以SS連結總顆粒背向散射係數bbp(550)之6個迴歸係數;(2) 無機顆粒和CDOM吸收光譜斜率常數的 S_dm和S_g,以及(3) 總顆粒背向散射光譜指數常數。其次,利用基因演算法將SA-SD模式最佳化,率定出最佳生光係數解。經過訓練及驗證之SA-SD模式,其準確性可達log-R2=0.73,比較卡爾森的透明度與葉綠素a回歸關係式,還有以現地資料進行多元迴歸分析方法所推導的關係式,log-R2值分別為0.07與0.71,結果顯示本研究之SA-SD模式比一般的回歸關係式有較高的準確度。此外以最佳綠光波段解析水庫透明度也比Z. Lee et al. (2015)提出以藍光波段為佳。SA-SD模式敏感度分析結果顯示SS與TOC為主要影響透明度的變數,且模式唯一限制條件是不能接受葉綠素a濃度為零。
在以Landsat 8跟Sentinel 2A衛星影像遙測國內水庫透明度方面,本研究發現半解析模式中輻照度漫射衰減係數(Kd)及水面輻射反射率(rw)在Landsat 8影像應採用561波長,在Sentinel 2A影像應採用560波長,此與過去Z. Lee et al. (2015)發展此透明度模式應用於海洋水體採用之490波長有所不同。Landsat 8和Sentinel 2A影像分別具有30及10公尺解析度,雖比不上過去國內水庫常用之SPOT (10 m)與福衛二號影像(8 m),但仍能顯示蓄水面積最小主要水庫的水質變化,且具有免費、品管嚴謹、能進行嚴謹大氣校正、多頻譜及光譜解析度較高的優勢。比較Landsat 8和Sentinel 2A資料於水庫水質遙測之運用,Sentinel 2A衛星對於透明度較高之水庫,如翡翠及日月潭水庫,有較高的失真率;但對於較低透明度且面積小之澄清湖水庫,則有不錯的解析能力;而在Landsat 8部份,對於各水庫透明度的分佈情形皆能精確掌握,較具有台灣水庫透明度遙測之可行性。故以Landsat-8影像分析國內8座主要水庫水質,透明度與濁度分佈有密切關係,受到沿岸及入流口沖刷的影響,帶來的懸浮物質造成透明度較低;另外,由於集水區的營養鹽排入水庫中,所以在相對透明度較高的地方,受到的光穿透較深造成藻類大量生長,而有較高的葉綠素a濃度。
本研究建議以半解析模式分析水質與透明度的關係,有科學根據性地找出造成水庫透明度惡化的主要原因,並能對症下藥改善水質。為提高SA-SD的實用性,未來應將模式中bbp()項細分出針對藻體顆粒背向散射係數bbph()項,以進一步探討藻體顆粒對透明度的影響。經本研究評估Landsat-8最適合用於國內水庫水質遙測,就透明度而言其遙測水質相對差異百分比為25 %,其他水質(葉綠素a及濁度)準確度雖不在本研究探討之列,但分析透明度與其他水質間的空間變化關係,發現透明度的分佈主要與濁度有關。另外,分析透明度與葉綠素a間關係,可將八座水庫分為:(1) 以光為限制因子之A類;(2) 以營養鹽為限制因子之B類;(3) 混合光及營養鹽為限制因子之C類。針對不同分類,可以了解營養鹽類及光穿透水體對藻類生長的影響,藉此擬訂不同改善水庫優養化之計畫。
因此,本研究認為利用Landsat 8針對透明度與其他水質之間的比較,具有能即時掌握水庫水質的受損情況及污染來源的能力,建議相關管理機關可將其納為監測水庫全域水質的平台。
The measurement of Secchi disk depth to quantify the clarity (transparency) of water is the most direct and fast way, and most of reservoirs in Taiwan which was identified as the eutrophic reservoir because of low transparency. Transparency must be based on science as the background combined the water optical theory and physical model of transparency to explore the impact of domestic reservoir transparency of the key factors.
Therefore, this study was corrected the semi-analytical transparency (SA-SD) model to figure out optimum decision variables by using genetic algorithm. After the pattern verification, the log-R2 is 0.73, and drew a comparison between Carlson's experimental algorithm, and the stepwise regression, the log-R2 is 0.07 and 0.71, respectively. The results showed that the SA-SD model of this study have higher accuracy than the general regression models.
The remote sensing of inland water body mostly through the empirical relationship method of measuring the transparency in the past. In this study the results found that the domestic reservoir of radiative attenuation coefficient (Kd) and the surface radiation reflectance (rw) which tr and pc wavelength are located in the green band. So this study attempts to use Landsat 8 and Sentinel 2A high resolution multispectral satellite images, using green band Kd and rw as input product through the new transparent physical model for mapping Secchi disk depth of eight reservoirs.
Aas, E., Høkedal, J., & Sørensen, K. (2014). Secchi depth in the Oslofjord-Skagerrak area: theory, experiments and relationships to other quantities.
Arst, H., & Arst, K. I. U. (2003). Optical properties and remote sensing of multicomponental water bodies: Springer Science & Business Media.
Arst, H., Erm, A., Herlevi, A., Kutser, T., Leppäranta, M., Reinart, A., & Virta, J. (2008). Optical properties of boreal lake waters in Finland and Estonia. Boreal Environment Research, 13(2).
Binding, C. E., Jerome, J. H., Bukata, R. P., & Booty, W. G. (2007). Trends in water clarity of the lower Great Lakes from remotely sensed aquatic color. Journal of Great Lakes Research, 33(4), 828-841.
Boyce, D. G., Lewis, M., & Worm, B. (2012). Integrating global chlorophyll data from 1890 to 2010. Limnology and Oceanography: Methods, 10(11), 840-852.
Boyce, D. G., Lewis, M. R., & Worm, B. (2010). Global phytoplankton decline over the past century. Nature, 466(7306), 591-596. doi: 10.1038/nature09268
Bricaud, A., Babin, M., Morel, A., & Claustre, H. (1995). Variability in the chlorophyll‐specific absorption coefficients of natural phytoplankton: Analysis and parameterization. Journal of Geophysical Research: Oceans, 100(C7), 13321-13332.
Bricaud, A., Morel, A., & Prieur, L. (1981). Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Limnology and oceanography, 26(1), 43-53.
Bukata, R. P., Jerome, J. H., Kondratyev, A. S., & Pozdnyakov, D. V. (1995). Optical properties and remote sensing of inland and coastal waters: CRC press.
Carlson, R. E. (1977). A trophic state index for lakes. Limnology and oceanography, 22(2), 361-369.
Chang, C.-H., Liu, C.-C., Chung, H.-W., Lee, L.-J., & Yang, W.-C. (2014). Development and evaluation of a genetic algorithm-based ocean color inversion model for simultaneously retrieving optical properties and bottom types in coral reef regions. Applied optics, 53(4), 605-617.
Cheng, K. S., & Lei, T. C. (2001). Reservoir trophic state evaluation using Lanisat TM images. JAWRA Journal of the American Water Resources Association, 37(5), 1321-1334.
Christopher Frey, H., & Patil, S. R. (2002). Identification and review of sensitivity analysis methods. Risk analysis, 22(3), 553-578.
Cialdi, A. (1866). Sul moto ondoso del mare e su le correnti di esso specialmente su quelle littorali: Tipographia delle belle arti.
Davies-Colley, R. J., Vant, W. N., & Smith, D. G. (2003). Colour and clarity of natural waters: Blackburn Press.
Davies‐Colley, R., & Vant, W. (1988). Estimation of optical properties of water from Secchi disk depths. JAWRA Journal of the American Water Resources Association, 24(6), 1329-1335.
Dogliotti, A. I., Ruddick, K., Nechad, B., Doxaran, D., & Knaeps, E. (2015). A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine waters. Remote sensing of environment, 156, 157-168.
Duntley, S. Q. (1960). The Visibility of Submerged Objects (Chapters 1 through 4). Scripps Institution of Oceanography.
Gallegos, C. L., Werdell, P. J., & McClain, C. R. (2011). Long‐term changes in light scattering in Chesapeake Bay inferred from Secchi depth, light attenuation, and remote sensing measurements. Journal of Geophysical Research: Oceans, 116(C7).
Gordon, H., & Morel, A. (1983). Remote assessment of ocean color for interpretation of satellite visible imagery: A review.
Gordon, H. R. (1989). Can the Lambert‐Beer law be applied to the diffuse attenuation coefficient of ocean water? Limnology and oceanography, 34(8), 1389-1409.
Gordon, H. R., Brown, O. B., & Jacobs, M. M. (1975). Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean. Applied optics, 14(2), 417-427.
Gordon, H. R., Smith, R. C., Ronald, J., & Zaneveld, V. (1980). Introduction to ocean optics. Paper presented at the Ocean Optics VI.
Gordon, H. R., & Wang, M. (1994). Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm. Applied optics, 33(3), 443-452. doi: 10.1364/AO.33.000443
Højerslv, N. K. (1977). Spectral daylight irradiance and light transmittance in natural waters measured by means of a Secchi disc only. ICES Journal of Marine Science, 19.
Højerslv, N. K. (1978). Daylight measurements appropriate for photosynthetic studies in natural sea waters. ICES Journal of Marine Science, 38(2), 131-146. doi: 10.1093/icesjms/38.2.131
Hakvoort, H., De Haan, J., Jordans, R., Vos, R., Peters, S., & Rijkeboer, M. (2002). Towards airborne remote sensing of water quality in The Netherlands—validation and error analysis. ISPRS Journal of Photogrammetry and Remote Sensing, 57(3), 171-183.
Haltrin, V. I. (1998). Spectral relative clarity of Black and Aegean Seas. Paper presented at the Geoscience and Remote Sensing Symposium Proceedings, 1998. IGARSS'98. 1998 IEEE International.
Helton, J. C., & Davis, F. (2002). Illustration of sampling‐based methods for uncertainty and sensitivity analysis. Risk analysis, 22(3), 591-622.
Hou, W., Lee, Z., & Weidemann, A. D. (2007). Why does the Secchi disk disappear? An imaging perspective. Optics Express, 15(6), 2791-2802.
IOCCG. (2006). Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications. Lee, Z.-P. (ed.), Reports of the International Ocean-Colour Coordinating Group, No. 5, IOCCG, Dartmouth, Canada.
Jerlov, N. G. (1976). Marine optics (Vol. 14): Elsevier.
Kirk, J. (1984). Dependence of relationship between inherent and apparent optical properties of water on solar altitude. Limnology and oceanography, 29(2), 350-356.
Kirk, J. T. (1991). Volume scattering function, average cosines, and the underwater light field. Limnology and oceanography, 36(3), 455-467.
Kirk, J. T. (1994). Light and photosynthesis in aquatic ecosystems: Cambridge university press.
Kishino, M., Booth, C. R., & Okami, N. (1984). Underwater radiant energy absorbed by phytoplankton, detritus, dissolved organic matter, and pure water. Limnology and oceanography, 29(2), 340-349.
Kopelevich, O. V. (1983). Small-Parameter Model of Optical Properties of Seawater, Chapter 8 in Ocean Optics, vol 1: Physical Ocean Optics: Moscow: Nauka Pub.
Krümmel, O. (1889). Bemerkungen über die Durchsichtigkeit des Meerwassers. Ann. d. Hydr. mar. Met, 2, 62-78.
Krümmel, O. (2013). Der Ozean: eine Einführung in die allgemeine Meereskunde: BoD–Books on Demand.
Lee, Z. (1994). VISIBLE-INFRARED REMOTE-SENSING MODEL. University of South Florida.
Lee, Z., Carder, K. L., & Arnone, R. A. (2002). Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters. Applied optics, 41(27), 5755-5772.
Lee, Z., Carder, K. L., Mobley, C. D., Steward, R. G., & Patch, J. S. (1998). Hyperspectral remote sensing for shallow waters. I. A semianalytical model. Applied optics, 37(27), 6329-6338.
Lee, Z., Hu, C., Shang, S., Du, K., Lewis, M., Arnone, R., & Brewin, R. (2013). Penetration of UV‐visible solar radiation in the global oceans: Insights from ocean color remote sensing. Journal of Geophysical Research: Oceans, 118(9), 4241-4255.
Lee, Z., Shang, S., Hu, C., Du, K., Weidemann, A., Hou, W., Lin, J., & Lin, G. (2015). Secchi disk depth: A new theory and mechanistic model for underwater visibility. Remote sensing of environment, 169, 139-149.
Lee, Z., Shang, S., Qi, L., Yan, J., & Lin, G. (2016). A semi-analytical scheme to estimate Secchi-disk depth from Landsat-8 measurements. Remote sensing of environment, 177, 101-106.
Lee, Z. P., Du, K. P., & Arnone, R. (2005). A model for the diffuse attenuation coefficient of downwelling irradiance. Journal of Geophysical Research: Oceans, 110(C2).
Lisitzin, E. (1938). Über die Durchsichtigkeit des Wassers im nördlichen Teil des Baltischen Meeres. Retrieved from: https://www.e-varamu.ee/item/7HXISZGLWPAY4QAYPHAL4PZQO3KMK3ZU
Maritorena, S., Siegel, D. A., & Peterson, A. R. (2002). Optimization of a semianalytical ocean color model for global-scale applications. Applied optics, 41(15), 2705-2714.
Megard, R. O., & Berman, T. (1989). Effects of algae on the Secchi transparency of the southeastern Mediterranean Sea. Limnology and oceanography, 34(8), 1640-1655.
Mobley, C. D. (1994). Light and water: radiative transfer in natural waters: Academic press.
Mobley, C. D., Sundman, L. K., Davis, C. O., Bowles, J. H., Downes, T. V., Leathers, R. A., Montes, M. J., Bissett, W. P., Kohler, D. D., & Reid, R. P. (2005). Interpretation of hyperspectral remote-sensing imagery by spectrum matching and look-up tables. Applied optics, 44(17), 3576-3592.
Morel, A. (1974). Optical properties of pure water and pure sea water. Optical aspects of oceanography, 1, 1-24.
Morel, A., & Loisel, H. (1998). Apparent optical properties of oceanic water: dependence on the molecular scattering contribution. Applied optics, 37(21), 4765-4776.
Morel, A., & Prieur, L. (1977). Analysis of variations in ocean color. Limnology and oceanography, 22(4), 709-722.
Mueller, J. L., Fargion, G. S., McClain, C. R., Pegau, S., Zanefeld, J., Mitchell, B. G., Kahru, M., Wieland, J., & Stramska, M. (2003). Ocean optics protocols for satellite ocean color sensor validation, revision 4, volume IV: Inherent optical properties: Instruments, characterizations, field measurements and data analysis protocols.
O'Reilly, J. E., Maritorena, S., Mitchell, B. G., Siegel, D. A., Carder, K. L., Garver, S. A., Kahru, M., & McClain, C. (1998). Ocean color chlorophyll algorithms for SeaWiFS. Journal of Geophysical Research: Oceans, 103(C11), 24937-24953.
Odermatt, D., Gitelson, A., Brando, V. E., & Schaepman, M. (2012). Review of constituent retrieval in optically deep and complex waters from satellite imagery. Remote sensing of environment, 118, 116-126.
Pope, R. M., & Fry, E. S. (1997). Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Applied optics, 36(33), 8710-8723.
Preisendorfer, R. W. (1961). Application of radiative transfer theory to light measurements in the sea. Union Geod. Geophys. Inst. Monogr., 10, 11-30.
Preisendorfer, R. W. (1976). Hydrologic Optics. Volume 5. Properties: Honolulu: US Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Pacific Marine Environmental Laboratory.
Preisendorfer, R. W. (1986). Secchi disk science: Visual optics of natural waters. Limnology and oceanography, 31(5), 909-926.
Prieur, L., & Sathyendranath, S. (1981). An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials. Limnology and oceanography, 26(4), 671-689.
Robinson, I. (1985). Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A review: By HR Gordon and AY Morel. Springer‐Verlag, Berlin, 1983. Pp. 114. DM 58 (approx. US $22.5). Quarterly Journal of the Royal Meteorological Society, 111(469), 872-872.
Roesler, C. S., Perry, M. J., & Carder, K. L. (1989). Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters. Limnology and oceanography, 34(8), 1510-1523.
Saltelli, A. (2002). Sensitivity analysis for importance assessment. Risk analysis, 22(3), 579-590.
Sathyendranath, S., Lazzara, L., & Prieur, L. (1987). Variations in the spectral values of specific absorption of phytoplankton. Limnology and oceanography, 32(2), 403-415.
Smith, R. C., & Baker, K. S. (1981). Optical properties of the clearest natural waters (200–800 nm). Applied optics, 20(2), 177-184.
Stavn, R. H., & Weidemann, A. D. (1989). Shape factors, two‐flow models, and the problem of irradiance inversion in estimating optical parameters. Limnology and oceanography, 34(8), 1426-1441.
Swift, T. J., Perez-Losada, J., Schladow, S. G., Reuter, J. E., Jassby, A. D., & Goldman, C. R. (2006). Water clarity modeling in Lake Tahoe: Linking suspended matter characteristics to Secchi depth. Aquatic Sciences-Research Across Boundaries, 68(1), 1-15.
Tyler, J. E. (1960). Radiance distribution as a function of depth in an underwater environment. Bull. Scripps Inst. Oceanogr., 7, 363–411.
Vanhellemont, Q., & Ruddick, K. (2015). Advantages of high quality SWIR bands for ocean colour processing: Examples from Landsat-8. Remote sensing of environment, 161, 89-106.
Wang, M., & Shi, W. (2005). Estimation of ocean contribution at the MODIS near‐infrared wavelengths along the east coast of the US: Two case studies. Geophysical Research Letters, 32(13).
Wang, M., & Shi, W. (2007). The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing. Optics Express, 15(24), 15722-15733.
Wang, M., Son, S., & Shi, W. (2009). Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data. Remote sensing of environment, 113(3), 635-644.
Wernand, M. R. (2010). On the history of the Secchi disc. Journal of the European Optical Society: Rapid Publications, 5. doi: 10.2971/jeos.2010.10013s
YACOBI, Y. Z., Alberts, J. J., Takacs, M., & McELVAINE, M. (2003). Absorption spectroscopy of colored dissolved organic carbon in Georgia (USA) rivers: the impact of molecular size distribution. Journal of Limnology, 62(1), 41-46.
Zhang, X., Hu, L., & He, M.-X. (2009). Scattering by pure seawater: effect of salinity. Optics Express, 17(7), 5698-5710.
Zhang, Y., Pulliainen, J., Koponen, S., & Hallikainen, M. (2002). A semi-empirical algorithm of water transparency at the Green wavelength band of optical remote sensing. Progress In Electromagnetics Research, 37, 191-203.
行政院環保署. (2016). 全國環境水質監測資訊網. from http://wq.epa.gov.tw
吳祐欣. (2016). 以 MODIS Aqua 海洋水色衛星影像評估台灣近岸水質. 成功大學環境工程學系學位論文, 1-143.
狄學賢. (2016). 結合水體生光性質與半解析光學理論模式模擬日月潭透明度. 成功大學環境工程學系學位論文, 1-101.
張智華, & 黃韋旻. (2015). 探討水質對日月潭水色與澄清度之影響. 工業污染防治134: 19-38.
黃建洲. (2009). 應用 Landsat 7 衛星影像於水庫水質監測之研究. (碩士), 中華大學.
黃韋旻. (2015). 以比濃度固有光學性質建立水庫水色及透明度模式之研究. 成功大學環境工程學系學位論文, 1-166.
黃韋旻, 吳祐欣, & 張智華. (2015). 以生光性質與輻射傳輸評估高沉積物負荷水庫優養化與透明度之關連性:以南化水庫為例. 2015環境資訊與規劃管理研討會,中壢,台灣.
楊明德, 劉益誠, & 張騏顯. (2008). 應用衛星影像於石門水庫水質優養監測. 第十七屆水利工程研討會.
劉正千, 張智華, 許華宇, 譚子健, & 溫清光. (2007). 應用 ISIS 高頻譜光學遙測影像於曾文水庫之水質監測. 科儀新知(161), 29-42.
蕭國鑫, 吳啟南, & 廖子毅. (2005). 地面光譜資料與 SPOT 影像應用於水質定量推估研究. Journal of Photogrammetry and Remote Sensing, 10, 169-182.
譚子健. (2007). 應用生光模式及福衛二號遙測影像研究曾文水庫水質之時空分佈. 成功大學環境工程學系學位論文, 1-120.