| 研究生: |
陳惟紹 Chen, Wei-Shao |
|---|---|
| 論文名稱: |
原子力顯微鏡之設計、製造與控制 Design, Manufacturing, and Control of Atomic Force Microscopies |
| 指導教授: |
田思齊
Tein, Szu-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 原子力顯微鏡 、H∞控制 、壓電致動器 |
| 外文關鍵詞: | Atomic Force Microscope, H∞ control, piezoactuator |
| 相關次數: | 點閱:135 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文目的是設計、製造並控制一套原子力顯微鏡系統。在奈米領域,原子力顯微鏡是套基礎且強勁的顯像儀器,然而,它的顯像速度較慢,因而限制了它的應用範圍。為改善原子力顯微鏡的顯像速度,需增加垂直於X-Y 掃描平面的Z 軸頻寬。在本研究中,經由對各子系統頻寬的分析,我們以堆疊式壓電致動器為X、Y、Z 三軸致動器,設計出原子力顯微鏡的硬體,並用 PI 控制器與 H∞ 控制器進行反饋控制,以實現Z 軸致動器對樣品形貌的追蹤。實驗結果證實,此自製的原子力顯微鏡可達奈米級的解析度,且較商用產品而言,具有較高的Z 軸頻寬。
The purpose of this thesis is to design, manufacture and control an atomic force microscope. In the field of nanotechnology, an atomic force microscope is a fundamental
and powerful tool for imaging samples. However, it is usually operated at relatively low speeds and that limits its applications. To improve the operation speed of an atomic force microscope, high bandwidth in z-axis (i.e., the axis perpendicular to the scanning xy-plane) is essential. In this research, we analyze the bandwidth of each subsystem, and design the hardware of an atomic force microscope with stack piezo actuators in three-axes(x-,y-,z-axis). Furthermore, PI and H1 feedback controllers are implemented for motion control in z-axis to track topography of the sample. Experimental results show that the homemade atomic force microscope can achieve nanometer resolution, and has higher bandwidth than commercial products in z-axis.
[1] G. Binnig, C. F. Quate, and C. Gerber. Atomic force microscope. Physical review
letters, 56(9):930–933, 1986.
[2] P. C. Braga and D. Ricci. Atomic force microscopy: biomedical methods and appli-
cations. Springer, 2004.
[3] H. Yang, Y. Wang, S. Lai, H. An, Y. Li, and F. Chen. Application of atomic
force microscopy as a nanotechnology tool in food science. Journal of food science,
72(4):R65–R75, 2007.
[4] J. A. Last, P. Russell, P. F. Nealey, and C. J. Murphy. The applications of atomic
force microscopy to vision science. Investigative Ophthalmology & Visual Science,
51(12):6083–6094, 2010.
[5] S. Liu and Y. Wang. Application of afm in microbiology: a review. Scanning,
32(2):61–73, 2010.
[6] W. A. Rees, R. W. Keller, J. P. Vesenka, G. Yang, and C. Bustamante. Evidence
of dna bending in transcription complexes imaged by scanning force microscopy.
Science, 260(5114):1646–1649, 1993.
[7] S. Kasas, N. H. Thomson, B. L. Smith, H. G. Hansma, X. Zhu, M. Guthold, C. Bustamante,
E. T. Kool, M. Kashlev, and P. K. Hansma. Escherichia coli rna polymerase
activity observed using atomic force microscopy. Biochemistry, 36(3):461–
468, 1997.
[8] I. Aragno, P. Odetti, F. Altamura, O. Cavalleri, and R. Rolandi. Structure of rat tail
tendon collagen examined by atomic force microscope. Experientia, 51(11):1063–
1067, 1995.
[9] W. H¨aberle, J. K. H. H¨orber, F. Ohnesorge, D. P. E. Smith, and G. Binnig. In situ
investigations of single living cells infected by viruses. Ultramicroscopy, 42:1161–
1167, 1992.
[10] D. Braunstein and A. Spudich. Structure and activation dynamics of rbl-2h3 cells
observed with scanning force microscopy. Biophysical journal, 66(5):1717–1725,
1994.
[11] S. Kasas, A. Berdal, and M. R. Celio. Tooth structure studied using the atomic
force microscope. In OE/LASE’93: Optics, Electro-Optics, & Laser Applications
in Science& Engineering, pages 17–25, 1993.
[12] T. Ushiki, M. Shigeno, K. Abe, et al. Atomic force microscopy of embedment-free
sections of cells and tissues. Archives of histology and cytology, 57(4):427, 1994.
[13] N. J. Fullwood, A. Hammiche, H. M. Pollock, D. J. Hourston, and M. Song. Atomic
force microscopy of the cornea and sclera. Current eye research, 14(7):529–535,
1995.
[14] L. Gross, F. Mohn, N. Moll, P. Liljeroth, and G. Meyer. The chemical structure
of a molecule resolved by atomic force microscopy. Science, 325(5944):1110–1114,
2009.
[15] P. Vettiger, G. Cross, M. Despont, U. Drechsler, U. Durig, B. Gotsmann,
W. Haberle, M. Lantz, H. E. Rothuizen, R. Stutz, et al. The” millipede”- nanotechnology
entering data storage. IEEE Transactions on nanotechnology, 1(1):39–55,
2002.
[16] V. A. Ukraintsev, C. Baum, G. Zhang, and C. L. Hall. The role of afm in semiconductor
technology development: the 65 nm technology node and beyond. In Proc.
SPIE, volume 5752, pages 127–139, 2005.
[17] R. B. Lewis, A. Timmons, R. E. Mar, and J. R. Dahn. In situ afm measurements
of the expansion and contraction of amorphous sn-co-c films reacting with lithium.
Journal of The Electrochemical Society, 154(3):A213–A216, 2007.
[18] S. Kasas, N. H. Thomson, B. L. Smith, P. K. Hansma, J. Miklossy, and H. G.
Hansma. Biological applications of the afm: from single molecules to organs. In-
ternational journal of imaging systems and technology, 8(2):151–161, 1997.
[19] A. Ikai, K. Yoshimura, F. Arisaka, A. Ritani, and K. Imai. Atomic force microscope
of bacteriophage t4 and its tube-baseplate complex. FEBS letters, 326(1):39–41,
1993.
[20] G. Binnig, H. Rohrer, C. Gerber, and E. Weibel. Surface studies by scanning
tunneling microscopy. Physical review letters, 49(1):57–61, 1982.
[21] G. Schitter, K. J. Astrom, B. E. DeMartini, P. J. Thurner, K. L. Turner, and
P. K. Hansma. Design and modeling of a high-speed afm-scanner. Control Systems
Technology, IEEE Transactions on, 15(5):906–915, 2007.
[22] T. Ando, N. Kodera, E. Takai, D. Maruyama, K. Saito, and A. Toda. A high-speed
atomic force microscope for studying biological macromolecules. Proceedings of the
National Academy of Sciences, 98(22):12468–12472, 2001.
[23] S. Salapaka, A. Sebastian, J. P. Cleveland, and M. V. Salapaka. High bandwidth
nano-positioner: A robust control approach. Review of scientific instruments,
73(9):3232–3241, 2002.
[24] D. Croft, G. Shedd, and S. Devasia. Creep, hysteresis, and vibration compensation
for piezoactuators: Atomic force microscopy application. In American Control
Conference, 2000. Proceedings of the 2000, volume 3, pages 2123–2128, 2000.
[25] G. Schitter, P. Menold, H. F. Knapp, F. Allgower, and A. Stemmer. High performance
feedback for fast scanning atomic force microscopes. Review of Scientific
Instruments, 72(8):3320–3327, 2001.
[26] Y.P. Wang. The compensation for coupling-effect in multi axis motion: a tracking
and levelling example with postioning stages. Master’s thesis, National Cheng Kung
University, 2012.
[27] Q. Zhong, D. Inniss, K. Kjoller, and V. B. Elings. Fractured polymer/silica fiber
surface studied by tapping mode atomic force microscopy. Surface Science Letters,
290(1):L688–L692, 1993.
[28] S. K. Hung. Design and Control of Novel Atomic Force Microscope Systems. PhD
thesis, National Taiwan University, 2007.
[29] J. E. Lennard-Jones. Cohesion. Proceedings of the Physical Society, 43(5):461, 1931.
[30] N. Blanc, J. Brugger, N. F. De Rooij, and U. Durig. Scanning force microscopy
in the dynamic mode using microfabricated capacitive sensors. Journal of Vacuum
Science & Technology B: Microelectronics and Nanometer Structures, 14(2):901–
905, 1996.
[31] M. Tortonese, R. C. Barrett, and C. F. Quate. Atomic resolution with an atomic
force microscope using piezoresistive detection. Applied physics letters, 62:834, 1993.
[32] D. Rugar, H. J. Mamin, and P. Guethner. Improved fiber-optic interferometer for
atomic force microscopy. Applied Physics Letters, 55(25):2588–2590, 1989.
[33] C. A. J. Putman, B. G. De Grooth, N. F. Van Hulst, and J. Greve. A detailed
analysis of the optical beam deflection technique for use in atomic force microscopy.
Journal of applied physics, 72(1):6–12, 1992.
[34] P. J. Chen and S. T. Montgomery. A macroscopic theory for the existence of the
hysteresis and butterfly loops in ferroelectricity. Ferroelectrics, 23(1):199–207, 1980.
[35] P. J. Ko. Design, manufacturing and control of piezo-stage. Master’s thesis, National
Cheng Kung University, 2010.
[36] K. K. Leang. Iterative learning control of hysteresis in piezo-based nano-positioners:
theory and application in atomic force microscopes. PhD thesis, University of Washington,
2004.
[37] H. C. Liaw and B. Shirinzadeh. Neural network motion tracking control of piezoactuated
flexure-based mechanisms for micro-/nanomanipulation. Mechatronics,
IEEE/ASME Transactions on, 14(5):517–527, 2009.
[38] W. Heywang, K. Lubitz, and W. Wersing. Piezoelectricity: Evolution and Future
of a Technology. Springer, 2008.
[39] G. Baluta. Microstepping mode for stepper motor control. In Signals, Circuits and
Systems, 2007. ISSCS 2007. International Symposium on, volume 2, pages 1–4,
2007.
[40] S. S. Crump. Apparatus and method for creating three-dimensional objects, June 9
1992. US Patent 5,121,329.
[41] H. J. M. T. S. Adriaens, W. L. De Koning, and R. Banning. Modeling piezoelectric
actuators. Mechatronics, IEEE/ASME Transactions on, 5(4):331–341, 2000.
[42] J. G. Ziegler and N. B. Nichols. Optimum settings for automatic controllers. trans.
ASME, 64(11), 1942.
[43] K. Ogata. Modern control engineering. Pearson Education International, 2002.
[44] K. J. Astr¨om and T. H¨agglund. PID Controllers: Theory, Design, and Tuning.
Instrument Society of America, Research Triangle Park, NC, 1995.
[45] K. Zhou and J. C. Doyle. Essentials of robust control. Prentice Hall Upper Saddle
River, NJ, 1998.
[46] K. Zbou and J. C. Doyle. Essentials of Robust and Optimal Control. Prentice Hall,
Upper Saddle River, NJ, 1997.
[47] S. Skogestad and I. Postlethwaite. Multivariable Feedback Control: Analysis and
Design. Joh Wiley & Sons, 2001.
[48] K. Zbou, J. C. Doyle, and K. Glover. Robust and Optimal Control. Prentice Hall,
Upper Saddle River, NJ, 1995.
[49] J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis. State-space solutions
to standard h2 and h1 control problems. IEEE Transactions on Autimatic Control,
34(8), 1989.
[50] D.W. Gu, P. H. Petkov, andM. M. Konstantinov. Robust control design with matlab.
Springer, 2005.
[51] Budget Sensors. Probe ContAl Datasheet.
[52] Budget Sensors. HG-500MG.
[53] Pintek Electronics Co., Ltd. HA-205 spections.
[54] Piezomechanik: GmbH. Piezo-mechanical and electrostrictive Stack and ring actuators:
Product range and Technical data.
[55] Raise Electro-optics Co., Ltd. Visible laser diode.
[56] Advanced Photonix, Inc. Red enhanced bi-cell silicon photodiode.
[57] Vishay Semiconductors. TCST2103 data sheet.