簡易檢索 / 詳目顯示

研究生: 陳惟紹
Chen, Wei-Shao
論文名稱: 原子力顯微鏡之設計、製造與控制
Design, Manufacturing, and Control of Atomic Force Microscopies
指導教授: 田思齊
Tein, Szu-Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 107
中文關鍵詞: 原子力顯微鏡H∞控制壓電致動器
外文關鍵詞: Atomic Force Microscope, H∞ control, piezoactuator
相關次數: 點閱:135下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文目的是設計、製造並控制一套原子力顯微鏡系統。在奈米領域,原子力顯微鏡是套基礎且強勁的顯像儀器,然而,它的顯像速度較慢,因而限制了它的應用範圍。為改善原子力顯微鏡的顯像速度,需增加垂直於X-Y 掃描平面的Z 軸頻寬。在本研究中,經由對各子系統頻寬的分析,我們以堆疊式壓電致動器為X、Y、Z 三軸致動器,設計出原子力顯微鏡的硬體,並用 PI 控制器與 H∞ 控制器進行反饋控制,以實現Z 軸致動器對樣品形貌的追蹤。實驗結果證實,此自製的原子力顯微鏡可達奈米級的解析度,且較商用產品而言,具有較高的Z 軸頻寬。

    The purpose of this thesis is to design, manufacture and control an atomic force microscope. In the field of nanotechnology, an atomic force microscope is a fundamental
    and powerful tool for imaging samples. However, it is usually operated at relatively low speeds and that limits its applications. To improve the operation speed of an atomic force microscope, high bandwidth in z-axis (i.e., the axis perpendicular to the scanning xy-plane) is essential. In this research, we analyze the bandwidth of each subsystem, and design the hardware of an atomic force microscope with stack piezo actuators in three-axes(x-,y-,z-axis). Furthermore, PI and H1 feedback controllers are implemented for motion control in z-axis to track topography of the sample. Experimental results show that the homemade atomic force microscope can achieve nanometer resolution, and has higher bandwidth than commercial products in z-axis.

    圖目錄. . . . . . . . . . . iii 表目錄. . . . . . . . . . . vi 符號表. . . . . . . . . . . vii 第一章緒論. . . . . . . . . . . 1 1.1 現有設計. . . . . . . . 2 1.2 本文設計. . . . . . . . 7 1.3 本文架構. . . . . . . . 7 第二章原理與問題. . . . . . . 8 2.1 原子力顯微鏡原理. . . . . . . 8 2.2 控制問題. . . . . . . . 11 第三章機構設計. . . . . . . . 15 3.1 二維壓電定位平台. . . . . . . 15 3.2 步進馬達升降平台. . . . . . . 20 3.3 探針驅動系統. . . . . . . . . . 22 3.4 光路系統. . . . . . . . 26 第四章控制策略與模擬. . . . . . . . . 32 4.1 動態系統建模. . . . . . . . . . 32 4.2 追蹤模擬. . . . . . . . 43 4.2.1 PI 控制器. . . . . . . . 44 4.2.2 H1 控制器. . . . . . . 48 第五章實驗與討論. . . . . . . 61 5.1 實驗設備. . . . . . . . 61 5.2 實驗結果. . . . . . . . 68 5.3 討論. . . . . . . . . . . 80 第六章結論與展望. . . . . . . 83 6.1 結論. . . . . . . . . . . 83 6.2 展望. . . . . . . . . . . 84 參考文獻. . . . . . . . . 85 附錄A 電路圖. . . . . . . . . 91 附錄B 實驗器材規格. . . . . . . . . . 95 附錄C H1 控制器. . . . . . . 101 附錄D H1 控制器強健度模擬. . . . . . . . 104 附錄E 校正數據. . . . . . . . 107

    [1] G. Binnig, C. F. Quate, and C. Gerber. Atomic force microscope. Physical review
    letters, 56(9):930–933, 1986.
    [2] P. C. Braga and D. Ricci. Atomic force microscopy: biomedical methods and appli-
    cations. Springer, 2004.
    [3] H. Yang, Y. Wang, S. Lai, H. An, Y. Li, and F. Chen. Application of atomic
    force microscopy as a nanotechnology tool in food science. Journal of food science,
    72(4):R65–R75, 2007.
    [4] J. A. Last, P. Russell, P. F. Nealey, and C. J. Murphy. The applications of atomic
    force microscopy to vision science. Investigative Ophthalmology & Visual Science,
    51(12):6083–6094, 2010.
    [5] S. Liu and Y. Wang. Application of afm in microbiology: a review. Scanning,
    32(2):61–73, 2010.
    [6] W. A. Rees, R. W. Keller, J. P. Vesenka, G. Yang, and C. Bustamante. Evidence
    of dna bending in transcription complexes imaged by scanning force microscopy.
    Science, 260(5114):1646–1649, 1993.
    [7] S. Kasas, N. H. Thomson, B. L. Smith, H. G. Hansma, X. Zhu, M. Guthold, C. Bustamante,
    E. T. Kool, M. Kashlev, and P. K. Hansma. Escherichia coli rna polymerase
    activity observed using atomic force microscopy. Biochemistry, 36(3):461–
    468, 1997.
    [8] I. Aragno, P. Odetti, F. Altamura, O. Cavalleri, and R. Rolandi. Structure of rat tail
    tendon collagen examined by atomic force microscope. Experientia, 51(11):1063–
    1067, 1995.
    [9] W. H¨aberle, J. K. H. H¨orber, F. Ohnesorge, D. P. E. Smith, and G. Binnig. In situ
    investigations of single living cells infected by viruses. Ultramicroscopy, 42:1161–
    1167, 1992.
    [10] D. Braunstein and A. Spudich. Structure and activation dynamics of rbl-2h3 cells
    observed with scanning force microscopy. Biophysical journal, 66(5):1717–1725,
    1994.
    [11] S. Kasas, A. Berdal, and M. R. Celio. Tooth structure studied using the atomic
    force microscope. In OE/LASE’93: Optics, Electro-Optics, & Laser Applications
    in Science& Engineering, pages 17–25, 1993.
    [12] T. Ushiki, M. Shigeno, K. Abe, et al. Atomic force microscopy of embedment-free
    sections of cells and tissues. Archives of histology and cytology, 57(4):427, 1994.
    [13] N. J. Fullwood, A. Hammiche, H. M. Pollock, D. J. Hourston, and M. Song. Atomic
    force microscopy of the cornea and sclera. Current eye research, 14(7):529–535,
    1995.
    [14] L. Gross, F. Mohn, N. Moll, P. Liljeroth, and G. Meyer. The chemical structure
    of a molecule resolved by atomic force microscopy. Science, 325(5944):1110–1114,
    2009.
    [15] P. Vettiger, G. Cross, M. Despont, U. Drechsler, U. Durig, B. Gotsmann,
    W. Haberle, M. Lantz, H. E. Rothuizen, R. Stutz, et al. The” millipede”- nanotechnology
    entering data storage. IEEE Transactions on nanotechnology, 1(1):39–55,
    2002.
    [16] V. A. Ukraintsev, C. Baum, G. Zhang, and C. L. Hall. The role of afm in semiconductor
    technology development: the 65 nm technology node and beyond. In Proc.
    SPIE, volume 5752, pages 127–139, 2005.
    [17] R. B. Lewis, A. Timmons, R. E. Mar, and J. R. Dahn. In situ afm measurements
    of the expansion and contraction of amorphous sn-co-c films reacting with lithium.
    Journal of The Electrochemical Society, 154(3):A213–A216, 2007.
    [18] S. Kasas, N. H. Thomson, B. L. Smith, P. K. Hansma, J. Miklossy, and H. G.
    Hansma. Biological applications of the afm: from single molecules to organs. In-
    ternational journal of imaging systems and technology, 8(2):151–161, 1997.
    [19] A. Ikai, K. Yoshimura, F. Arisaka, A. Ritani, and K. Imai. Atomic force microscope
    of bacteriophage t4 and its tube-baseplate complex. FEBS letters, 326(1):39–41,
    1993.
    [20] G. Binnig, H. Rohrer, C. Gerber, and E. Weibel. Surface studies by scanning
    tunneling microscopy. Physical review letters, 49(1):57–61, 1982.
    [21] G. Schitter, K. J. Astrom, B. E. DeMartini, P. J. Thurner, K. L. Turner, and
    P. K. Hansma. Design and modeling of a high-speed afm-scanner. Control Systems
    Technology, IEEE Transactions on, 15(5):906–915, 2007.
    [22] T. Ando, N. Kodera, E. Takai, D. Maruyama, K. Saito, and A. Toda. A high-speed
    atomic force microscope for studying biological macromolecules. Proceedings of the
    National Academy of Sciences, 98(22):12468–12472, 2001.
    [23] S. Salapaka, A. Sebastian, J. P. Cleveland, and M. V. Salapaka. High bandwidth
    nano-positioner: A robust control approach. Review of scientific instruments,
    73(9):3232–3241, 2002.
    [24] D. Croft, G. Shedd, and S. Devasia. Creep, hysteresis, and vibration compensation
    for piezoactuators: Atomic force microscopy application. In American Control
    Conference, 2000. Proceedings of the 2000, volume 3, pages 2123–2128, 2000.
    [25] G. Schitter, P. Menold, H. F. Knapp, F. Allgower, and A. Stemmer. High performance
    feedback for fast scanning atomic force microscopes. Review of Scientific
    Instruments, 72(8):3320–3327, 2001.
    [26] Y.P. Wang. The compensation for coupling-effect in multi axis motion: a tracking
    and levelling example with postioning stages. Master’s thesis, National Cheng Kung
    University, 2012.
    [27] Q. Zhong, D. Inniss, K. Kjoller, and V. B. Elings. Fractured polymer/silica fiber
    surface studied by tapping mode atomic force microscopy. Surface Science Letters,
    290(1):L688–L692, 1993.
    [28] S. K. Hung. Design and Control of Novel Atomic Force Microscope Systems. PhD
    thesis, National Taiwan University, 2007.
    [29] J. E. Lennard-Jones. Cohesion. Proceedings of the Physical Society, 43(5):461, 1931.
    [30] N. Blanc, J. Brugger, N. F. De Rooij, and U. Durig. Scanning force microscopy
    in the dynamic mode using microfabricated capacitive sensors. Journal of Vacuum
    Science & Technology B: Microelectronics and Nanometer Structures, 14(2):901–
    905, 1996.
    [31] M. Tortonese, R. C. Barrett, and C. F. Quate. Atomic resolution with an atomic
    force microscope using piezoresistive detection. Applied physics letters, 62:834, 1993.
    [32] D. Rugar, H. J. Mamin, and P. Guethner. Improved fiber-optic interferometer for
    atomic force microscopy. Applied Physics Letters, 55(25):2588–2590, 1989.
    [33] C. A. J. Putman, B. G. De Grooth, N. F. Van Hulst, and J. Greve. A detailed
    analysis of the optical beam deflection technique for use in atomic force microscopy.
    Journal of applied physics, 72(1):6–12, 1992.
    [34] P. J. Chen and S. T. Montgomery. A macroscopic theory for the existence of the
    hysteresis and butterfly loops in ferroelectricity. Ferroelectrics, 23(1):199–207, 1980.
    [35] P. J. Ko. Design, manufacturing and control of piezo-stage. Master’s thesis, National
    Cheng Kung University, 2010.
    [36] K. K. Leang. Iterative learning control of hysteresis in piezo-based nano-positioners:
    theory and application in atomic force microscopes. PhD thesis, University of Washington,
    2004.
    [37] H. C. Liaw and B. Shirinzadeh. Neural network motion tracking control of piezoactuated
    flexure-based mechanisms for micro-/nanomanipulation. Mechatronics,
    IEEE/ASME Transactions on, 14(5):517–527, 2009.
    [38] W. Heywang, K. Lubitz, and W. Wersing. Piezoelectricity: Evolution and Future
    of a Technology. Springer, 2008.
    [39] G. Baluta. Microstepping mode for stepper motor control. In Signals, Circuits and
    Systems, 2007. ISSCS 2007. International Symposium on, volume 2, pages 1–4,
    2007.
    [40] S. S. Crump. Apparatus and method for creating three-dimensional objects, June 9
    1992. US Patent 5,121,329.
    [41] H. J. M. T. S. Adriaens, W. L. De Koning, and R. Banning. Modeling piezoelectric
    actuators. Mechatronics, IEEE/ASME Transactions on, 5(4):331–341, 2000.
    [42] J. G. Ziegler and N. B. Nichols. Optimum settings for automatic controllers. trans.
    ASME, 64(11), 1942.
    [43] K. Ogata. Modern control engineering. Pearson Education International, 2002.
    [44] K. J. Astr¨om and T. H¨agglund. PID Controllers: Theory, Design, and Tuning.
    Instrument Society of America, Research Triangle Park, NC, 1995.
    [45] K. Zhou and J. C. Doyle. Essentials of robust control. Prentice Hall Upper Saddle
    River, NJ, 1998.
    [46] K. Zbou and J. C. Doyle. Essentials of Robust and Optimal Control. Prentice Hall,
    Upper Saddle River, NJ, 1997.
    [47] S. Skogestad and I. Postlethwaite. Multivariable Feedback Control: Analysis and
    Design. Joh Wiley & Sons, 2001.
    [48] K. Zbou, J. C. Doyle, and K. Glover. Robust and Optimal Control. Prentice Hall,
    Upper Saddle River, NJ, 1995.
    [49] J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis. State-space solutions
    to standard h2 and h1 control problems. IEEE Transactions on Autimatic Control,
    34(8), 1989.
    [50] D.W. Gu, P. H. Petkov, andM. M. Konstantinov. Robust control design with matlab.
    Springer, 2005.
    [51] Budget Sensors. Probe ContAl Datasheet.
    [52] Budget Sensors. HG-500MG.
    [53] Pintek Electronics Co., Ltd. HA-205 spections.
    [54] Piezomechanik: GmbH. Piezo-mechanical and electrostrictive Stack and ring actuators:
    Product range and Technical data.
    [55] Raise Electro-optics Co., Ltd. Visible laser diode.
    [56] Advanced Photonix, Inc. Red enhanced bi-cell silicon photodiode.
    [57] Vishay Semiconductors. TCST2103 data sheet.

    下載圖示 校內:2015-07-19公開
    校外:2015-07-19公開
    QR CODE