| 研究生: |
陳韋仁 Chen, Wei-Ren |
|---|---|
| 論文名稱: |
完全無阻塞量子交換器的設計與分析 Design and Analysis of a Fully Non-blocking Quantum Switch |
| 指導教授: |
蘇銓清
Sue, Chuan-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 量子卡諾圖 、交換閘 、完全網狀 、量子電腦 、無阻塞 |
| 外文關鍵詞: | SWAP gate, non-blocking, Quantum Karnaugh mapping, fully meshed, Quantum computer |
| 相關次數: | 點閱:128 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於現今網路流量呈爆炸性的成長所以我們在網路頻寬上的需求是快速的增加,因此我們為了要能夠避免掉一個完全網狀的網路架構圖,所以我們考慮使用交換器裝置來建立在實際可行的網路上面來,以便我們能夠應付處理網路流量爆炸性的成長,雖然各式各樣的交換器已經被提出來,不過在交換器設備上,當我們所要傳送的資料很重要的時候,若發生阻塞將會導致嚴重的問題,所以我們主要考慮探討交換器的缺點是著重在阻塞方面的這個問題上面。
量子資訊科學是一個比較新的研究視野,量子電腦首先在80年代被討論[1-3],從那時候以來,量子便成為我們研究的一個重要主題。因此,本篇論文中我們想要利用量子技術來解決交換器上阻塞的問題。
在我們先前的研究當中,參考文獻[21]中雖然能夠解決阻塞問題但是卻相對的犧牲了封包遺失的這個代價,而在參考文獻[13]中雖然解決了阻塞問題但是卻會造成交換器中的量子交換閘呈現指數型的方式成長,在參考文獻[22]中雖然能夠解決阻塞問題但是該架構下的預期延遲時間複雜度卻是蠻高的,所以在本篇論文中,我們改善上述三篇文獻的缺點並且設計了一種完全無阻塞量子交換器,該交換器是由兩個部份組成,其中一個部份是量子交換閘另一個部份是量子控制閘,然後欲傳送封包的資料部份是通過量子交換閘而封包的控制部份是通過量子控制閘,本篇論文中,我們的量子交換器中所需的量子交換閘只需線性複雜度的個數,並且在建構量子控制閘的部份我們是採用量子卡諾圖來做電路化簡,然後我們會就硬體複雜度,預期延遲時間複雜度,輔助量子位元複雜度跟封包遺失機率這四方面來跟先前已提出的量子自身路由封包交換器[21] & 量子交換器跟量子合併排序[22]做效能比較。
The demand for bandwidth is rapidly increasing due to the explosive growth of network traffic. In order to avoid a fully-meshed architecture, a switching device is considered to build a realistic network which can handle the explosive growth of network traffic. Every kind of switches is presented. Blocking in a data-network can lead a serious problem if the data happens to be important. Therefore, the drawback of the switching device is mainly focused on the blocking problem.
Quantum information science is a relatively new field of study. Quantum computers were first discussed in the early 1980’s [1-3]. Since then, a great deal of research has been focused on this topic. Hence, my thesis wanted to use quantum technique dealing with the blocking problem of switch.
Our previous studies have presented the solutions in the quantum context to avoid blocking at the expense of increasing packet loss [21], the exponential size of quantum SWAP gates [13] and the high propagation delay time complexity [22]. Hence, we improved the above-mentioned drawbacks and designed a Fully Non-blocking Quantum Switch which is composed of two parts in our thesis. The one is quantum SWAP gates and the other is quantum control gate. The payload of the packet is passed through quantum SWAP gates and the header of packet is passed through quantum control gates. We just need linear size of quantum SWAP gates in our thesis and using Quantum Karnaugh mapping method to construct the quantum control gates. After that we compared performance with previously proposed quantum self-routing packet switch [21] & quantum switching and quantum merge sorting [22] in terms of the hardware complexity, the propagation delay time complexity, auxiliary qubit complexity and packet loss probability.
[1] P. Benioff, “The computer as a physical system: a microscopic quantum mechanical hamiltoian model of computers as represented by turing machines,” J. Shat. Phys., vol. 22(5), pp. 563-591, 1980.
[2] R. Feynman, “Simulating physics with computers,” Int. J. Theor. Phys., vol. 21, pp. 467-488, 1982.
[3] D. Deutsch, “Quantum theory, the Church-Turing principle and the universal quantum computer,” Proc. Roy. Soc. Lond. A, vol. 400, pp. 97-117, 1985.
[4] C. L. Wu and T. Feng, “On a class of multistage interconnection networks,” IEEE Trans. Computer, Vol. C-29, no. 8, pp. 694-702, Aug, 1980.
[5] C. L. Wu and T. Feng, “The universality of the shuffle-exchange network,” IEEE Trans. Computer, vol. 30, no. 8, pp. 324-332, May, 1981.
[6] F. K. Hwang, “The Mathematical Theory of Nonblocking Switching Networks”, ser. Series on applied mathematics, F. K. Hwang, Ed. Singapore: World Scientific Publishing Co. Pte. Ltd, vol. 11, 1998.
[7] C. Clos, “A study of non-blocking switching networks”, Bell Syst. Tech. J., vol.32, no.2, pp.406-424, Mar, 1953.
[8] D. G. Cantor, “On nonblocking switching networks,” Networks, vol.1, pp.367-377, 1971.
[9] Wang-Jiunn Cheng and Wen-Tsuen Chen, “A new self-routing permutation network,” IEEE Transactions on Computers, vol.45, pp.630-636, May, 1996.
[10] C. Y. Lee and A. Y. Oruc, “Design of efficient and easily routable generalized connectors,” IEEE Trans. Commun., pp.646-650, Feb, 1995.
[11] V. E. Benes, “Mathematical Theory of connecting Networks and Telephone Traffic.” Academic Press, 1965.
[12] C. Moore and M. Nilsson. (1998, Aug.). “Parallel quantum computation and quantum codes”. [Online] Available:http://arxiv.org/quant-ph/9808027/.
[13]. I . M. Tsai and S. Y. Kuo, “Digital Switching in the Quantum Domain.” IEEE Transactions on Nanotechnology, SEPT , pp.154-164, 2002.
[14] P. W. Diaconis and S. P. Holmes, “Matchings and phylogenetic trees.” Proc. Natl. Acad. Sci. USA, Vol. 95, pp.14600-14602, December 1998.
[15] J. –S. Lee, Y. Chung, J. Kim, and S. Lee, “A Practical Method of Constructing Quantum Combinational Logic Circuits.” http://arXiv.org/quant-ph/9911053.
[16] I-Ming Tsai and Sy-Yen Kuo, “Quantum Boolean Circuit Construction and Layout under Locality Constraint,” in Proc. Of the 1st IEEE Conference on Nanotechnology, pp. 111-116, 2001.
[17] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes, “Reversible logic circuit synthesis,” Proc. IEEE/ACM Intl. Conf. on Computer Aided Design, pp. 353-360, November 2002.
[18] K. Iwama, Y. Kambayashi, and S. Yamashita, “Transformation Rules for Designing CNOT-based Quantum Circuits,” Proc. DAC, pp.419-425, June, 2002.
[19] K. N. Patel, I. L. Markov, and J. P. Hayes, “Efficient Synthesis of Linear Reversible Circuits,” http://arXiv.org/quant-ph/0302002, 2003.
[20] S. A. Wang, C. Y. Lu, I. M. Tsai, and S. Y. Kuo, “Modified Karnaugh Map for Quantum Boolean Circuit Construction,” Proceedings of the 2003 IEEE Conference on Nanotechnology (IEEE-NANO 2003), San Francisco, California, vol.2, pp.651-654, Aug. 2003
[21] M. K. shukla, R. Ratan, and A. Y. Oruc, “A quantum self-routing packet switch,” in Proceedings of the 38th Annual Conference on Information Sciences and Systems CISS’04, Princeton, NJ, USA, Mar , pp. 484-489, 2004.
[22] S. T. Cheng and C. Y. Wang, “Quantum Switching and Quantum Merge Sorting,” IEEE Transactions on Circuits and Systems, vol.53, pp.316-325, February, 2006.