簡易檢索 / 詳目顯示

研究生: 楊宇恩
Yang, Yu-En
論文名稱: 多尺度山崩變動之監測與估算:結合地基雷達、遙測影像與生成對抗網路之整合應用
Multi-scale Monitoring and Estimation of Landslide Dynamics: Integrated Applications of Ground-based Radar, Remote Sensing Imagery, and Generative Adversarial Networks
指導教授: 余騰鐸
Yu, Teng-To
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2026
畢業學年度: 114
語文別: 中文
論文頁數: 196
中文關鍵詞: 山崩偵測多期雙時相影像分析(MBTIs)地形變化量(DEM of Difference, DoD)條件生成對抗網路(cGAN)地基式合成孔徑雷達(GB-InSAR)
外文關鍵詞: Landslide detection, Multi-Bitemporal Images (MBTIs), DEM of Difference (DoD), Conditional Generative Adversarial Network (cGAN), Ground-Based Synthetic Aperture Radar (GB-InSAR)
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臺灣位處環太平洋地震帶與亞熱帶季風區,地質條件脆弱,且頻繁受到強降雨與地震影響,極易引發山崩與邊坡滑動災害,對人民安全與基礎設施構成重大威脅。因此,發展兼具即時性、廣域性與高精度的山崩偵測與監測技術,成為災害風險管理的核心課題。本研究整合三種具代表性的監測技術與尺度架構,針對山崩變動進行多面向探討:
    第一部分提出「多期雙時相影像分析法」 (Multi-Bitemporal Images, MBTIs) ,利用 Google Earth Engine (GEE) 大量匯入事件前後的衛星影像,搭配像素級雲霧遮蔽過濾與變化統計,完成山崩範圍的自動化偵測與量化。此方法可同時整合所有可用影像進行交叉驗證,有效提升變化訊號的可靠度與空間涵蓋率。在設定誤判率 1% 的條件下,MBTIs 仍能穩定輸出高一致性的變化結果,相較於傳統機器學習或深度學習方法在複雜山區中仍易產生高誤判,MBTIs 展現更佳的實用性與穩健性,在雲端運算架構下,計算720組衛星影像差分,可在15分鐘內完成偵測。
    第二部分建構以條件生成對抗網路 (conditional Generative Adversarial Network, cGAN) 為核心的深度學習架構,使用數值地形模型 (Digital Elevation Models, DEMs) 與多光譜衛星影像,預測山崩後的地形變化量 (DEM of Difference, DoD) ,並估算侵蝕與堆積體積。結果顯示該模型具備空間分布重建與體積估算的能力。
    第三部分則針對坡地現場監測,本研究於多處邊坡布設地基合成孔徑雷達 (GB-InSAR) ,比較旋轉式與線性式系統之特性,並於不同條件下 (降雨、工程施工、爆破事件) 分析邊坡微位移行為。結果顯示,GB-InSAR 可於短時間提供毫米級位移資訊,能清楚辨識邊坡位移趨勢、變化邊界時序反應;旋轉式系統具有部署快速與場地需求低的優勢,而線性式系統在成像解析度上表現較佳。
    三項技術互補後,可形成「崩塌範圍判釋-地形變化量估算-近場位移監測」的完整地表變遷分析鏈,展現高度的資料整合與實務應用潛力。此整合式框架強化了山崩資料庫品質、改善事件後地形推估方式,並建立可用於不同地貌區與監測需求之通用型分析,對臺灣山區地形變遷研究與中長期環境監測有重要貢獻。

    This study develops an integrated, multi-scale framework for comprehensive landslide management, aiming to advance the spatial completeness of landslide inventories and enhance the accurate quantification of terrain change and near-real-time deformation monitoring. Three complementary methodologies were employed: (1) A Multi-Bitemporal Images (MBTIs) approach, implemented via Google Earth Engine (GEE), was used for the automated and large-scale delineation of landslide boundaries. (2) A conditional Generative Adversarial Network (cGAN) was engineered to generate predictive DEM of Difference (DoD) maps from multispectral imagery, facilitating the rapid estimation of erosion and deposition volumes. (3) Ground-Based Synthetic Aperture Radar (GB-InSAR) systems were deployed on-site to quantify the millimeter-scale deformation that occurs in response to environmental triggers such as rainfall, excavation, and blasting. This framework provides robust, data-driven support for disaster management, achieving crucial cross-scale integration from regional detection to site-specific, high-precision quantification. The results show that MBTIs improve the spatial consistency of landslide mapping, the cGAN model provides stable terrain-change predictions, and GB-InSAR captures short-term displacement behavior. When integrated, these methods form a coherent workflow linking landslide detection, terrain change estimation, and near-field deformation monitoring.

    摘要 I 誌謝 VII 縮寫對照表 IX 目錄 X 表目錄 XII 圖目錄 XIV 第一章 緒論 1 1-1 研究背景與動機 1 1-2 研究問題與研究目的 2 1-3 研究架構與章節安排 3 1-4 已發表成果聲明 5 第二章 文獻回顧 6 2-1 山崩研究之基本構面 6 2-2 機器學習與深度學習理論 13 2-3 機器學習與深度學習山崩相關文獻 22 2-4 山崩體積與破壞深度估算相關研究 24 2-5 分析就緒資料與雲端運算平台 25 2-6 地基合成孔徑雷達應用於邊坡即時預警技術 26 2-7 整合應用與研究缺口 51 第三章 雲端運算多時序影像山崩範圍偵測 55 3-1 資料與研究區域 55 3-2 研究方法 63 3-3 小結 73 第四章 生成對抗網路應用於山崩量體推估 83 4-1 資料與研究區域 83 4-2 研究方法 87 4-3 小結 93 第五章 地基合成孔徑雷達監測山崩動態行為 113 5-1 GB-InSAR 監測儀器系統 113 5-2 研究區域 115 5-3 小結 120 第六章 綜合討論 131 6-1 各方法影響因子與不確定性分析 131 6-2 多期雙時相影像分析法之限制與誤差來源探討 143 6-3 cGAN 體積推估之模型可解釋性假設需求 144 6-4 GB-InSAR 監測之觀測幾何限制與變形解釋不確定性 145 6-5 多尺度斷裂與資料同化的缺失 146 第七章 結論與建議 147 7-1 結論 147 7-2 後續研究建議 149 參考文獻 151 口試委員意見回覆表 170

    1. Al-Najjar, H. A. H., Pradhan, B., Sarkar, R., Beydoun, G., & Alamri, A. (2021). A new integrated approach for landslide data balancing and spatial prediction based on generative adversarial networks (GAN). Remote Sensing, 13(19), 4011. https://doi.org/10.3390/rs13194011
    2. Allaway, A., Merrett, P., Eyre, J., & Stead, D. (1998). The application of GPS in monitoring landslide movements. Proc. of 8th Int. IAEG Congress, Balkema, Rotterdam
    3. Amézaga, A., López-Martínez, C., & Jové, R. (2021a). A Multi-Frequency FMCW GBSAR: System Description and First Results. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS,
    4. Amézaga, A., López-Martínez, C., & Jové, R. (2021b). A Multi-Frequency SDR-Based GBSAR: System Overview and First Results. Remote Sensing, 13(9), 1613.
    5. Antonello, G., Casagli, N., Farina, P., Fortuny, J., Leva, D., Nico, G., Sieber, A. J., & Tarchi, D. (2003). A ground-based interferometer for the safety monitoring of landslides and structural deformations. IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No. 03CH37477),
    6. Azmoon, B., Biniyaz, A., & Liu, Z. (2022). Use of high-resolution multi-temporal DEM data for landslide detection. Geosciences, 12(10), 378. https://doi.org/10.3390/geosciences12100378
    7. Barra, A., Monserrat, O., Crosetto, M., Cuevas-Gonzalez, M., Devanthéry, N., Luzi, G., & Crippa, B. (2017). Sentinel-1 data analysis for landslide detection and mapping: first experiences in Italy and Spain. Advancing Culture of Living with Landslides: Volume 3 Advances in Landslide Technology,
    8. Bernard, T. G., Lague, D., & Steer, P. (2020). Beyond 2D inventories: Synoptic 3D landslide volume calculation from repeat LiDAR data. Earth Surface Dynamics Discussions, 2020, 1-28.
    9. Bernard, T. G., Lague, D., & Steer, P. (2021). Beyond 2D landslide inventories and their rollover: synoptic 3D inventories and volume from repeat lidar data. Earth Surface Dynamics, 9(4), 1013-1044. https://doi.org/10.5194/esurf-9-1013-2021
    10. Beven, K. J., & Kirkby, M. J. (1979). A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d'appel variable de l'hydrologie du bassin versant. Hydrological sciences journal, 24(1), 43-69.
    11. Bhuyan, K., Meena, S. R., Nava, L., van Westen, C., Floris, M., & Catani, F. (2023). Mapping landslides through a temporal lens: an insight toward multi-temporal landslide mapping using the u-net deep learning model. GIScience & Remote Sensing, 60(1). 10.1080/15481603.2023.2182057
    12. Bhuyan, K., Rana, K., Ferrer, J. V., Cotton, F., Ozturk, U., Catani, F., & Malik, N. (2024). Landslide topology uncovers failure movements. Nature communications, 15(1), 2633. https://doi.org/10.1038/s41467-024-46741-7
    13. Bishop, A. W. (1955). The use of the slip circle in the stability analysis of slopes. Geotechnique, 5(1), 7-17.
    14. Bossi, G., Cavalli, M., Crema, S., Frigerio, S., Quan-Luna, B., Mantovani, M., Marcato, G., Schenato, L., & Pasuto, A. (2015). Multi-temporal LiDAR-DTMs as a tool for modelling a complex landslide: a case study in the Rotolon catchment (eastern Italian Alps). Natural Hazards and Earth System Sciences, 15(4), 715-722. https://doi.org/10.5194/nhess-15-715-2015
    15. Brasington, J., Rumsby, B. T., & Mcvey, R. A. (2000). Monitoring and modelling morphological change in a braided gravel-bed river using high resolution GPS-based survey. Earth Surface Processes and Landforms, 25(9), 973-990. https://doi.org/10.1002/1096-9837(200008)25:9<973::AID-ESP111>3.0.CO;2-Y
    16. Breiman, L. (2001). Random forests. Machine learning, 45, 5-32. 10.1023/A:1010933404324
    17. Brown, S. C., Quegan, S., Morrison, K., Bennett, J. C., & Cookmartin, G. (2003). High-resolution measurements of scattering in wheat canopies-implications for crop parameter retrieval. IEEE Transactions on Geoscience and Remote Sensing, 41(7), 1602-1610. https://doi.org/10.1109/TGRS.2003.814132
    18. Burges, C. J. (1998). A tutorial on support vector machines for pattern recognition. Data mining and knowledge discovery, 2(2), https://doi.org/10.1023/A:1009715923555
    19. Chen, H. S., He, Y., Zhang, L. F., Yang, W., Liu, Y. X., Gao, B. H., Zhang, Q., & Lu, J. A. (2024a). A multi-input channel U-Net landslide detection method fusing SAR multisource remote sensing data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 17, 1215-1232. https://doi.org/10.1109/JSTARS.2023.3339294
    20. Chen, Q. L., Guo-xiang; Li, Yong-shu; Ding, Xiao-li. (2006). Automated Detection of Permanent Scatterers in Radar Interferometry:Algorithmand Testing Results. Acta Geodaetica et Cartographica Sinica, 35(2).
    21. Chen, S.-C., Chou, H.-T., Chen, S.-C., Wu, C.-H., & Lin, B.-S. (2014a). Characteristics of rainfall-induced landslides in Miocene formations: A case study of the Shenmu watershed, Central Taiwan. Engineering Geology, 169, 133-146. https://doi.org/10.1016/j.enggeo.2013.11.020
    22. Chen, Z., Tang, J., & Song, D. (2024b). Modeling landslide susceptibility using alternating decision tree and support vector. Terrestrial, Atmospheric and Oceanic Sciences, 35(1), 1-19. https://doi.org/10.1007/s44195-024-00074-6
    23. Chen, Z., Zhang, B., Han, Y., Zuo, Z., & Zhang, X. (2014b). Modeling accumulated volume of landslides using remote sensing and DTM data. Remote Sensing, 6(2), 1514-1537. https://doi.org/10.3390/rs6021514
    24. Cheng, Y.-S., Yu, T.-T., & Son, N.-T. (2021). Random forests for landslide prediction in tsengwen river watershed, central taiwan. Remote Sensing, 13(2), 199. https://doi.org/10.3390/rs13020199
    25. Chou, J.-S., Nguyen, H.-M., Phan, H.-P., & Wang, K.-L. (2025). Predicting deep-seated landslide displacement on Taiwan's Lushan through the integration of convolutional neural networks and the Age of Exploration-Inspired Optimizer. Natural Hazards and Earth System Sciences, 25(1), 119-146. https://doi.org/10.5194/nhess-25-119-2025
    26. Clark, M. L., Clark, D. B., & Roberts, D. A. (2004). Small-footprint lidar estimation of sub-canopy elevation and tree height in a tropical rain forest landscape. Remote Sensing of Environment, 91(1), 68-89. https://doi.org/10.1016/j.rse.2004.02.008
    27. Coe, J., Godt, J., Baum, R., Bucknam, R., & Michael, J. (2004). Landslide susceptibility from topography in Guatemala. Landslides: evaluation and stabilization, 1, 69-78. 10.1201/b16816-8
    28. Crosetto, M., Monserrat, O., Luzi, G., Cuevas-González, M., & Devanthéry, N. (2014). Discontinuous GBSAR deformation monitoring. ISPRS Journal of Photogrammetry and Remote Sensing, 93, 136-141.
    29. Cruden, D. M. (1993). Cruden, DM, Varnes, DJ, 1996, Landslide Types and Processes, Transportation Research Board, US National Academy of Sciences, Special Report, 247: 36-75. Landslides Eng. Pract, 24, 20-47.
    30. Deijns, A. A., Bevington, A. R., van Zadelhoff, F., de Jong, S. M., Geertsema, M., & McDougall, S. (2020). Semi-automated detection of landslide timing using harmonic modelling of satellite imagery, Buckinghorse River, Canada. International Journal of Applied Earth Observation and Geoinformation, 84, https://doi.org/10.1016/j.jag.2019.101943
    31. Del Ventisette, C., Intrieri, E., Luzi, G., Casagli, N., Fanti, R., & Leva, D. (2011). Using ground based radar interferometry during emergency: the case of the A3 motorway (Calabria Region, Italy) threatened by a landslide. Natural Hazards and Earth System Sciences, 11(9), 2483-2495. https://doi.org/10.5194/nhess-11-2483-2011
    32. Developers, G. (2025). Machine Learning Crash Course. Retrieved 09-19 from https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc?hl=zh-tw
    33. Dou, J., Paudel, U., Oguchi, T., Uchiyama, S., & Hayakawa, Y. S. (2015). Shallow and deep-seated landslide differentiation using support vector machines: a case study of the Chuetsu Area, Japan. Terrestrial, Atmospheric and Oceanic Sciences, 26(2), 227. https://doi.org/10.3319/TAO.2014.12.02.07(EOSI)
    34. Duman, T. Y., Çan, T., Emre, Ö., Keçer, M., Doğan, A., Ateş, Ş., & Durmaz, S. (2005). Landslide inventory of northwestern Anatolia, Turkey. Engineering geology, 77(1-2), 99-114. https://doi.org/10.1016/j.enggeo.2004.08.005
    35. Eeckhaut, M. V. D., Poesen, J., Verstraeten, G., Vanacker, V., Nyssen, J., Moeyersons, J., Beek, L. v., & Vandekerckhove, L. (2007). Use of LIDAR‐derived images for mapping old landslides under forest. Earth Surface Processes and Landforms, 32(5), 754-769. https://doi.org/10.1002/esp.1417
    36. Emberson, R., Kirschbaum, D. B., Amatya, P., Tanyas, H., & Marc, O. (2022). Insights from the topographic characteristics of a large global catalog of rainfall-induced landslide event inventories. Natural Hazards and Earth System Sciences, 22(3), 1129-1149. https://doi.org/10.5194/nhess-22-1129-2022
    37. Ermini, L., Catani, F., & Casagli, N. (2005). Artificial neural networks applied to landslide susceptibility assessment. Geomorphology, 66(1-4), 327-343. https://doi.org/10.1016/j.geomorph.2004.09.025
    38. Fawcett, T. (2006). An introduction to ROC analysis. Pattern recognition letters, 27(8), 861-874. https://doi.org/10.1016/j.patrec.2005.10.010
    39. Feng, W., Friedt, J.-M., & Wan, P. (2021). SDR-implemented ground-based interferometric radar for displacement measurement. IEEE Transactions on Instrumentation and Measurement, 70, 1-18. https://doi.org/10.1109/TIM.2021.3069805
    40. Ferrigno, F., Gigli, G., Fanti, R., Intrieri, E., & Casagli, N. (2017). GB-InSAR monitoring and observational method for landslide emergency management: the Montaguto earthflow (AV, Italy). Natural Hazards and Earth System Sciences, 17(6), 845-860. https://doi.org/10.5194/nhess-17-845-2017
    41. Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189-1232. https://doi.org/10.1214/aos/1013203451
    42. Friedman, J. H. (2002). Stochastic gradient boosting. Computational statistics & data analysis, 38(4), 367-378. https://doi.org/10.1016/S0167-9473(01)00065-2
    43. Frodella, W., Salvatici, T., Pazzi, V., Morelli, S., & Fanti, R. (2017). GB-InSAR monitoring of slope deformations in a mountainous area affected by debris flow events. Natural Hazards and Earth System Sciences, 17(10), 1779-1793. https://doi.org/10.5194/nhess-17-1779-2017
    44. Gatter, R., Cavalli, M., Crema, S., & Bossi, G. (2018). Modelling the dynamics of a large rock landslide in the Dolomites (eastern Italian Alps) using multi-temporal DEMs. PeerJ, 6, e5903. https://doi.org/10.7717/peerj.5903
    45. Gholamrezaie, H., Hasanlou, M., Amani, M., & Mirmazloumi, S. M. (2022). Automatic Mapping of Burned Areas Using Landsat 8 Time-Series Images in Google Earth Engine: A Case Study from Iran. Remote Sensing, 14(24). https://doi.org/10.3390/rs14246376
    46. Ghorbanzadeh, O., Blaschke, T., Gholamnia, K., Meena, S., Tiede, D., & Aryal, J. (2019). Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection. Remote Sensing, 11(2), 196. https://doi.org/10.3390/rs11020196
    47. Ghorbanzadeh, O., Shahabi, H., Piralilou, S. T., Crivellari, A., La Rosa, L. E., Atzberger, C., Li, J., & Ghamisi, P. (2024). Contrastive self-supervised learning for globally distributed landslide detection. IEEE Access, 12. https://doi.org/10.1109/ACCESS.2024.3449447
    48. Ghorbanzadeh, O., Xu, Y., Zhao, H., Wang, J., Zhong, Y., Zhao, D., Zang, Q., Wang, S., Zhang, F., & Shi, Y. (2022). The outcome of the 2022 landslide4sense competition: Advanced landslide detection from multisource satellite imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 9927-9942. https://doi.org/10.1109/JSTARS.2022.3220845
    49. Gili, J. A., Corominas, J., & Rius, J. (2000). Using Global Positioning System techniques in landslide monitoring. Engineering geology, 55(3), 167-192. https://doi.org/10.1016/S0013-7952(99)00127-1
    50. Glenn, N. F., Streutker, D. R., Chadwick, D. J., Thackray, G. D., & Dorsch, S. J. (2006). Analysis of LiDAR-derived topographic information for characterizing and differentiating landslide morphology and activity. Geomorphology, 73(1-2), 131-148. https://doi.org/10.1016/j.geomorph.2005.07.006
    51. Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative Adversarial Networks , Advances in neural information processing systems, 27, https://doi.org/10.48550/arXiv.1406.2661
    52. Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18-27. https://doi.org/10.1016/j.rse.2017.06.031
    53. Griffiths, D., & Lane, P. (1999). Slope stability analysis by finite elements. Geotechnique, 49(3), 387-403. https://doi.org/10.1680/geot.1999.49.3.387
    54. Guzzetti, F., Ardizzone, F., Cardinali, M., Rossi, M., & Valigi, D. (2009). Landslide volumes and landslide mobilization rates in Umbria, central Italy. Earth and Planetary Science Letters, 279(3-4), 222-229. https://doi.org/10.1016/j.epsl.2009.01.005
    55. Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M., & Chang, K.-T. (2012). Landslide inventory maps: New tools for an old problem. Earth-Science Reviews, 112(1-2), 42-66. https://doi.org/10.1016/j.earscirev.2012.02.001
    56. Handwerger, A. L., Jones, S. Y., Amatya, P., Kerner, H. R., Kirschbaum, D. B., & Huang, M. H. (2021). Strategies for landslide detection using open-access synthetic aperture radar backscatter change in Google Earth Engine. Natural Hazards and Earth System Sciences Discussions, 2021, 1-35.
    57. Harries, N., Noon, D., Pritchett, H., & Bates, D. (2009). Slope stability radar for managing rock fall risks in open cut mines. Rock Engineering in Difficult Conditions, Proceedings of the 3rd Canada–US Rock Mechanics Symposium,
    58. Hölbling, D., Friedl, B., & Eisank, C. (2015). An object-based approach for semi-automated landslide change detection and attribution of changes to landslide classes in northern Taiwan. Earth Science Informatics, 8(2), 327-335. https://doi.org/10.1007/s12145-015-0217-3
    59. Hong, W., Tan, W., Wang, Y., & Wu, Y. (2010, June). Development and experiments of ground-based SAR in IECAS for advanced SAR imaging technique validation. In 8th European Conference on Synthetic Aperture Radar (pp. 1-4). VDE.
    60. Hopkinson, C., Chasmer, L. E., Zsigovics, G., Creed, I. F., Sitar, M., Treitz, P., & Maher, R. V. (2004). Errors in LiDAR ground elevation and wetland vegetation height estimates. International Archives of Photogrammetry, Remote Sensing, and Spatial Information Sciences, 36(8), 108-113. https://www.isprs.org/proceedings/xxxvi/8-w2/HOPKINSON.pdf
    61. Huang, T. (2022, Apr 24, 2022). 調頻連續波雷達 Frequency Modulated Continuous Wave (FMCW Radars): 測距/測速原理. Retrieved 17 Oct from https://chih-sheng-huang821.medium.com/
    62. Iglesias, R., Aguasca, A., Fabregas, X., Mallorqui, J. J., Monells, D., López-Martínez, C., & Pipia, L. (2014a). Ground-based polarimetric SAR interferometry for the monitoring of terrain displacement phenomena–Part I: Theoretical description. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(3), 980-993. https://doi.org/10.1109/JSTARS.2014.2360040
    63. Iglesias, R., Aguasca, A., Fabregas, X., Mallorqui, J. J., Monells, D., López-Martínez, C., & Pipia, L. (2014b). Ground-based polarimetric SAR interferometry for the monitoring of terrain displacement phenomena–Part II: Applications. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(3), 994-1007. https://doi.org/10.1109/JSTARS.2014.2360040
    64. Iglesias, R., Fabregas, X., Aguasca, A., Mallorqui, J. J., Lopez-Martinez, C., Gili, J. A., & Corominas, J. (2013). Atmospheric phase screen compensation in ground-based SAR with a multiple-regression model over mountainous regions. IEEE Transactions on Geoscience and Remote Sensing, 52(5), 2436-2449. https://doi.org/10.1109/JSTARS.2014.2366711
    65. Isola, P., Zhu, J.-Y., Zhou, T., & Efros, A. A. (2017). Image-to-image translation with conditional adversarial networks Proceedings of the IEEE conference on computer vision and pattern recognition, https://doi.org/10.1109/CVPR.2017.632
    66. Jaboyedoff, M., Oppikofer, T., Abellán, A., Derron, M.-H., Loye, A., Metzger, R., & Pedrazzini, A. (2012). Use of LIDAR in landslide investigations: a review. Natural hazards, 61, 5-28. https://doi.org/10.1007/s11069-010-9634-2
    67. Jan, J.-F. (2005). Comparison of forest canopy height derived using LIDAR data and aerial photos. Taiwan Journal of Forest Science, 20, 13-27. https://doi.org/10.7075/TJFS.200503.0013
    68. Janbu, N. (1954). Stability analysis of slopes with dimensionless parameters.
    69. Juang, C. S., Stanley, T. A., & Kirschbaum, D. B. (2019). Using citizen science to expand the global map of landslides: Introducing the Cooperative Open Online Landslide Repository (COOLR). PloS one, 14(7), e0218657. https://doi.org/10.1371/journal.pone.0218657
    70. Jungner, A. (2009). Ground-based synthetic aperture radar data processing for deformation measurement (Master’s thesis). KTH Royal Institute of Technology.
    71. Khabiri, S., Crawford, M. M., Koch, H. J., Haneberg, W. C., & Zhu, Y. (2023). An Assessment of Negative Samples and Model Structures in Landslide Susceptibility Characterization Based on Bayesian Network Models. Remote Sensing, 15(12), 3200. https://doi.org/10.3390/rs15123200
    72. Kirschbaum, D. B., Adler, R., Hong, Y., Hill, S., & Lerner-Lam, A. (2010). A global landslide catalog for hazard applications: method, results, and limitations. Natural hazards, 52, 561-575. https://doi.org/10.1007/s11069-009-9401-4
    73. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25.
    74. Kuo, C., Tai, Y.-C., Chen, C., Chang, K., Siau, A., Dong, J., Han, R., Shimamoto, T., & Lee, C. (2011). The landslide stage of the Hsiaolin catastrophe: Simulation and validation. Journal of Geophysical Research: Earth Surface, 116(F4). https://doi.org/10.1029/2010JF001921
    75. Larsen, I. J., Montgomery, D. R., & Korup, O. (2010). Landslide erosion controlled by hillslope material. Nature Geoscience, 3(4), 247-251. https://doi.org/10.1038/ngeo776
    76. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539
    77. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (2002). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. https://doi.org/10.1109/5.726791
    78. Lee, H., Cho, S.-J., Sung, N.-H., & Kim, J.-H. (2007). Development of a ground-based synthetic aperture radar system for highly repeatable measurements. Proc. 9th Workshop Subsurface Electromagn. Meas.
    79. Lee, H., Lee, J.-H., Kim, K.-E., Sung, N.-H., & Cho, S.-J. (2013). Development of a truck-mounted arc-scanning synthetic aperture radar. IEEE Transactions on Geoscience and Remote Sensing, 52(5), 2773-2779. https://doi.org/10.1109/TGRS.2013.2265700
    80. Lee, S., Ryu, J.-H., Won, J.-S., & Park, H.-J. (2004). Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Engineering Geology, 71(3-4), 289-302. https://doi.org/10.1016/S0013-7952(03)00142-X
    81. Leva, D., Nico, G., Tarchi, D., Fortuny-Guasch, J., & Sieber, A. J. (2003). Temporal analysis of a landslide by means of a ground-based SAR interferometer. IEEE Transactions on Geoscience and Remote Sensing, 41(4), 745-752. https://doi.org/10.1109/TGRS.2003.808902
    82. Li, J., Zhang, J., & Fu, Y. (2025). CTHNet: a CNN–Transformer hybrid network for landslide identification in Loess Plateau regions using high-resolution remote sensing images. Sensors, 25(1), 273. https://doi.org/10.3390/s25010273
    83. Lin, C.-W., Tseng, C.-M., Tseng, Y.-H., Fei, L.-Y., Hsieh, Y.-C., & Tarolli, P. (2013). Recognition of large scale deep-seated landslides in forest areas of Taiwan using high resolution topography. Journal of Asian Earth Sciences, 62, 389-400. https://doi.org/10.1016/j.jseaes.2012.10.022
    84. Lindsay, E., Frauenfelder, R., Rüther, D., Nava, L., Rubensdotter, L., Strout, J., & Nordal, S. (2022). Multi-temporal satellite image composites in google earth engine for improved landslide visibility: A case study of a glacial landscape. Remote Sensing, 14(10), 2301. 10.3390/rs14102301 https://doi.org/10.3390/rs14102301
    85. Liu, J.-K. (2012). Characterizing morphologic features of Taiwan landslides with airborne lidar data National Chiao Tung University]. Hsinchu, Taiwan. https://ir.lib.nycu.edu.tw/bitstream/11536/40392/1/682401.pdf
    86. Liu, J.-K. (2013). Characterizing Morphologic Features of Taiwan Landslides with Airborne LiDAR Data National Chiao Tung University].
    87. Liu, X. H., Xu, L., & Zhang, J. Y. (2024). Landslide detection with Mask R-CNN using complex background enhancement based on multi-scale samples. Geomatics, Natural Hazards and Risk, 15(1). https://doi.org/10.1080/19475705.2023.2300823
    88. Liu, X. R., Peng, Y. X., Lu, Z. L., Li, W., Yu, J. C., Ge, D. Q., & Xiang, W. (2023). Feature-fusion segmentation network for landslide detection using high-resolution remote sensing images and digital elevation model data. IEEE Transactions on Geoscience and Remote Sensing, 61. https://doi.org/10.1109/TGRS.2022.3233637
    89. Lo, C.-M., Lin, M.-L., Tang, C.-L., & Hu, J.-C. (2011). A kinematic model of the Hsiaolin landslide calibrated to the morphology of the landslide deposit. Engineering Geology, 123(1-2), 22-39. https://doi.org/10.1016/j.enggeo.2011.07.002
    90. Loh, W. Y. (2011). Classification and regression trees. Wiley interdisciplinary reviews: data mining and knowledge discovery, 1(1), 14-23. https://doi.org/10.1002/widm.8
    91. Lombardi, L., Nocentini, M., Frodella, W., Nolesini, T., Bardi, F., Intrieri, E., Carlà, T., Solari, L., Dotta, G., & Ferrigno, F. (2017). The Calatabiano landslide (southern Italy): preliminary GB-InSAR monitoring data and remote 3D mapping. Landslides, 14, 685-696. https://doi.org/10.1007/s10346-016-0767-6
    92. Lukin, K., Mogyla, A., Palamarchuk, V., Vyplavin, P., Zemlyaniy, O., Shiyan, Y., & Zaets, M. (2008). Ka-band bistatic ground-based noise waveform SAR for short-range applications. IET Radar, Sonar & Navigation, 2(4), 233-243. https://doi.org/10.1049/iet-rsn:20080017
    93. Luo, Y., Song, H., Wang, R., Deng, Y., Zhao, F., & Xu, Z. (2014). Arc FMCW SAR and applications in ground monitoring. IEEE Transactions on Geoscience and Remote Sensing, 52(9), 5989-5998. https://doi.org/10.1109/TGRS.2014.2325905
    94. Manning, C. D., Raghavan, P., & Schütze, H. (2009). Probabilistic information retrieval. Introduction to Information Retrieval, 220-235. https://doi.org/10.1017/CBO9780511809071.012
    95. Martha, T. R., Kerle, N., Van Westen, C. J., Jetten, V., & Kumar, K. V. (2011). Segment optimization and data-driven thresholding for knowledge-based landslide detection by object-based image analysis. IEEE Transactions on Geoscience and Remote Sensing, 49(12), 4928-4943. https://doi.org/10.1109/TGRS.2011.2151866
    96. Massey, C., Townsend, D., Jones, K., Lukovic, B., Rhoades, D., Morgenstern, R., Rosser, B., Ries, W., Howarth, J., & Hamling, I. (2020). Volume characteristics of landslides triggered by the MW 7.8 2016 Kaikōura Earthquake, New Zealand, derived from digital surface difference modeling. Journal of Geophysical Research: Earth Surface, 125(7), e2019JF005163. https://doi.org/10.1029/2019JF005163
    97. May, N. C., & Toth, C. K. (2007). Point positioning accuracy of airborne LiDAR systems: a rigorous analysis International Archives of Photogrammetry, Remote Sensing, and Spatial Information Sciences, Munich, Germany. https://www.isprs.org/proceedings/xxxvi/3-w49/partb/papers/PIA07_May_Toth.pdf
    98. Mayr, A., Rutzinger, M., Bremer, M., Oude Elberink, S., Stumpf, F., & Geitner, C. (2017). Object‐based classification of terrestrial laser scanning point clouds for landslide monitoring. The Photogrammetric Record, 32(160), 377-397. https://doi.org/10.1111/phor.12215
    99. Meadows, M., Jones, S., & Reinke, K. (2024). Vertical accuracy assessment of freely available global DEMs (FABDEM, Copernicus DEM, NASADEM, AW3D30 and SRTM) in flood-prone environments. International Journal of Digital Earth, 17(1), 2308734. https://doi.org/10.1080/17538947.2024.2308734
    100. Meena, S., Mishra, B., & Tavakkoli Piralilou, S. (2019). A Hybrid Spatial Multi-Criteria Evaluation Method for Mapping Landslide Susceptible Areas in Kullu Valley, Himalayas. Geosciences, 9(4). https://doi.org/10.3390/geosciences9040156
    101. Mensa, D. L. (1981). High resolution radar imaging. Artech House..
    102. Meta, A., & Trampuz, C. (2010). MetaSensing compact, high resolution interferometric SAR sensor for commercial and scientific applications. In The 7th European Radar Conference (pp. 21-24). IEEE.
    103. Mirza, M., & Osindero, S. (2014). Conditional generative adversarial nets (arXiv:1411.1784). arXiv. https://doi.org/10.48550/arXiv.1411.1784
    104. Mohan, A., Singh, A. K., Kumar, B., & Dwivedi, R. (2020). Review on remote sensing methods for landslide detection using machine and deep learning. Transactions on Emerging Telecommunications Technologies, 32(7). https://doi.org/10.1002/ett.3998
    105. Mohan, A., Singh, A. K., Kumar, B., & Dwivedi, R. (2021). Review on remote sensing methods for landslide detection using machine and deep learning. Transactions on Emerging Telecommunications Technologies, 32(7), https://doi.org/10.1002/ett.3998
    106. Mondini, A. C., Guzzetti, F., Chang, K.-T., Monserrat, O., Martha, T. R., & Manconi, A. (2021). Landslide failures detection and mapping using Synthetic Aperture Radar: Past, present and future. Earth-Science Reviews, 216, 103574. https://doi.org/10.1016/j.earscirev.2021.103574
    107. Monserrat, O., Crosetto, M., & Luzi, G. (2014). A review of ground-based SAR interferometry for deformation measurement. ISPRS Journal of Photogrammetry and Remote Sensing, 93, 40-48. https://doi.org/10.1016/j.isprsjprs.2014.04.001
    108. Mora, O. E., Lenzano, M. G., Toth, C. K., Grejner-Brzezinska, D. A., & Fayne, J. V. (2018). Landslide change detection based on multi-temporal Airborne LiDAR-derived DEMs. Geosciences, 8(1), 23. https://doi.org/10.3390/geosciences8010023
    109. Moreira, A., Prats-Iraola, P., Younis, M., Krieger, G., Hajnsek, I., & Papathanassiou, K. P. (2013). A tutorial on synthetic aperture radar. IEEE Geoscience and Remote Sensing Magazine, 1(1), 6-43. https://doi.org/10.1109/MGRS.2013.2248301
    110. Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT press.
    111. Musthafa, M., & Singh, G. (2022). Improving forest above-ground biomass retrieval using multi-sensor L-and C-band SAR data and multi-temporal spaceborne LiDAR data. Frontiers in Forests and Global Change, 5, 822704. https://doi.org/10.3389/ffgc.2022.822704
    112. Neaupane, K. M., & Achet, S. H. (2004). Use of backpropagation neural network for landslide monitoring: a case study in the higher Himalaya. Engineering geology, 74(3-4), 213-226. https://doi.org/10.1016/j.enggeo.2004.03.010
    113. Ni, S., Lu, P., & Juang, C. (1996). A fuzzy neural network approach to evaluation of slope failure potential. Computer‐Aided Civil and Infrastructure Engineering, 11(1), 59-66. https://doi.org/10.1111/j.1467-8667.1996.tb00309.x
    114. Notti, D., Cignetti, M., Godone, D., & Giordan, D. (2023). Semi-automatic mapping of shallow landslides using free Sentinel-2 images and Google Earth Engine. Natural Hazards and Earth System Sciences, 23(7), 2625-2648. https://doi.org/10.5194/nhess-2022-189
    115. Parise, M. (2001). Landslide mapping techniques and their use in the assessment of the landslide hazard. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & Planetary Science, 26(9), 697-703. https://doi.org/10.1016/S1464-1917(01)00069-1
    116. Parmar, A., Katariya, R., & Patel, V. (2019). A review on random forest: An ensemble classifier. International conference on intelligent data communication technologies and internet of things (ICICI) 2018, https://doi.org/10.1007/978-3-030-03146-6_86
    117. Phakdimek, S., Komori, D., & Chaithong, T. (2023). Combination of optical images and SAR images for detecting landslide scars, using a classification and regression tree. International Journal of Remote Sensing, 44(11), 3572-3606. https://doi.org/10.1080/01431161.2023.2224096
    118. Pieraccini, M., & Miccinesi, L. (2019). Ground-based radar interferometry: A bibliographic review. Remote Sensing, 11(9), 1029. https://doi.org/10.3390/rs11091029
    119. Pradhan, B., & Lee, S. (2009). Landslide risk analysis using artificial neural network model focusing on different training sites. Int J Phys Sci, 3(11), 1-15..
    120. Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434. https://doi.org/10.48550/arXiv.1511.06434
    121. Rao, S. (2017). Introduction to mmWave sensing: FMCW radars. Texas Instruments (TI) mmWave Training Series, 1-11.
    122. Shen, S.-M., Chen, Y.-H., Lo, C.-M., Yu, M.-T., Lin, S.-C., Wang, S., Chang, C.-H., & Lin, S.-C. (2023). A user-centered mapping design for geomorphological hazard thematic map. Journal of Maps, 19(1), 2251510. https://doi.org/10.1080/17445647.2023.2251510
    123. Singh, P., Maurya, V., & Dwivedi, R. (2021). Pixel Based Landslide Identification Using Landsat 8 and GEE 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, https://doi.org/10.1109/IGARSS47720.2021.9553358
    124. Skakun, S., Wevers, J., Brockmann, C., Doxani, G., Aleksandrov, M., Batič, M., Frantz, D., Gascon, F., Gómez-Chova, L., & Hagolle, O. (2022). Cloud Mask Intercomparison eXercise (CMIX): An evaluation of cloud masking algorithms for Landsat 8 and Sentinel-2. Remote Sensing of Environment, 274, https://doi.org/10.1016/j.rse.2022.112990
    125. Spiker, E. C., & Gori, P. (2003). National landslide hazards mitigation strategy, a framework for loss reduction. US Geological Survey.
    126. Subiyantoro, A., Van Westen, C. J., Den Bout, B. V., Yuniawan, R. A., & Mulyana, A. R. (2022). Semi-automatic Landslide Detection Using Google Earth Engine, a Case Study in Poi Village, Central Sulawesi 2022 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES), https://doi.org/10.1109/ICARES56907.2022.9993507
    127. Sun, M., Cao, H., & Duan, Y. (2025). A Method for Landslide Deformation Detection Based on Projection Surface Element Matching of 3D Models. Geoscience Data Journal, 12(2), e290. https://doi.org/10.1002/gdj3.290
    128. Tarboton, D. G. (2005). Terrain analysis using digital elevation models (TauDEM) (Utah State University, Issue. https://hydrology.usu.edu/taudem/taudem5/index.html
    129. Tarchi, D., Casagli, N., Moretti, S., Leva, D., & Sieber, A. J. (2003). Monitoring landslide displacements by using ground-based synthetic aperture radar interferometry: Application to the Ruinon landslide in the Italian Alps. Journal of Geophysical Research-Solid Earth, 108(B8). Artn 2387, https://doi.org/10.1029/2002JB002204
    130. Tarchi, D., Lukin, K., Fortuny-Guasch, J., Mogyla, A., Vyplavin, P., & Sieber, A. (2010). SAR imaging with noise radar. IEEE Transactions on Aerospace and Electronic systems, 46(3), 1214-1225. https://doi.org/10.1109/TAES.2010.5545184
    131. Tarchi, D., Ohlmer, E., & Sieber, A. (1997). Monitoring of structural changes by radar interferometry. Research in Nondestructive Evaluation, 9(4), 213-225. https://doi.org/10.1080/09349849708968130
    132. Tarchi, D., Oliveri, F., & Sammartino, P. F. (2012). MIMO radar and ground-based SAR imaging systems: Equivalent approaches for remote sensing. IEEE Transactions on Geoscience and Remote Sensing, 51(1), 425-435. https://doi.org/10.1109/TGRS.2012.2199120
    133. Terzaghi, K. (1926). Principles of soil mechanics: a summary of experimental studies of clay and sand. McGraw-Hill.
    134. Titti, G., Napoli, G. N., Conoscenti, C., & Lombardo, L. (2022). Cloud-based interactive susceptibility modeling of gully erosion in Google Earth Engine. International Journal of Applied Earth Observation and Geoinformation, 115. https://doi.org/10.1016/j.jag.2022.103089
    135. Tseng, C. M., Lin, C. W., Stark, C. P., Liu, J. K., Fei, L. Y., & Hsieh, Y. C. (2013). Application of a multi‐temporal, LiDAR‐derived, digital terrain model in a landslide‐volume estimation. Earth Surface Processes and Landforms, 38(13), 1587-1601. https://doi.org/10.1002/esp.3454
    136. Tuganishuri, J., Yune, C.-Y., Kim, G., Lee, S. W., Adhikari, M. D., & Yum, S.-G. (2025). Prediction of the volume of shallow landslides due to rainfall using data-driven models. Natural Hazards and Earth System Sciences, 25(4), 1481-1499.
    137. Turner, A. K. (1996). Landslides: investigation and mitigation. chapter 20-colluvium and talus.
    138. Tzeng, A. (2019). 卷積神經網路 (Convolutional Neural , CNN). HackMD. Retrieved 09/22 from https://hackmd.io/@allen108108/rkn-oVGA4
    139. Tzouvaras, M., Danezis, C., & Hadjimitsis, D. G. (2020). Small scale landslide detection using Sentinel-1 interferometric SAR coherence. Remote Sensing, 12(10), 1560. https://doi.org/10.3390/rs12101560
    140. Van Westen, C. J., Van Asch, T. W. J., & Soeters, R. (2005). Landslide hazard and risk zonation—why is it still so difficult? Bulletin of Engineering Geology and the Environment, 65(2), 167-184. https://doi.org/10.1007/s10064-005-0023-0
    141. Varnes, D. J. (1978). Slope movement types and processes. In R. L. Schuster & R. J. Krizek (Eds.), Landslides: Analysis and Control (Vol. 176, pp. 11-33). National Academy of Sciences.
    142. Viviani, F., Michelini, A., Mayer, L., & Conni, F. (2018). IBIS-ArcSAR: An innovative ground-based SAR system for slope monitoring. IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, https://doi.org/10.1109/IGARSS.2018.8517702
    143. Wang, H., Xu, W., & Xu, R. (2005). Slope stability evaluation using back propagation neural networks. Engineering Geology, 80(3-4), 302-315. https://doi.org/10.1016/j.enggeo.2005.06.005
    144. Wang, T., Yu, T., Lee, S., Peng, W., Lin, W., & Li, P. (2014). MATLAB code to estimate landslide volume from single remote sensed image using genetic algorithm and imagery similarity measurement. Computers & Geosciences, 70, 238-247. https://doi.org/10.1016/j.cageo.2014.06.004
    145. Wang, Y., Gao, H., Liu, S., Yang, D., Liu, A., & Mei, G. (2025). Landslide detection based on deep learning and remote sensing imagery: A case study in Linzhi City. Natural Hazards Research, 5(1), 95-108. https://doi.org/10.1016/j.nhres.2024.07.001
    146. Wang, Y., Hong, W., Qi, Y., Yang, X., & Ma, H. (2016). Displacement estimation and monitoring experiments based on time-series SAR imaging. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), https://doi.org/10.1109/IGARSS.2016.7728998
    147. Wang, Y., Hong, W., Zhang, Y., Lin, Y., Li, Y., Bai, Z., Zhang, Q., Lv, S., Liu, H., & Song, Y. (2020). Ground-based differential interferometry SAR: A review. IEEE Geoscience and Remote Sensing Magazine, 8(1), 43-70. https://doi.org/10.1109/MGRS.2019.2963169
    148. Wang, Y., Qi, Y., Tan, W., Yang, X., Ma, H., Hong, W., & Li, H. (2015). Experimental study on deformation monitoring based on GB-SAR. IET International Radar Conference 2015, https://doi.org/10.1049/cp.2015.1468
    149. Werner, C., Wiesmann, A., Strozzi, T., Kos, A., Caduff, R., & Wegmiüler, U. (2012). The GPRI multi-mode differential interferometric radar for ground-based observations. Eusar 2012; 9th european conference on synthetic aperture radar,
    150. Wheaton, J. M., Brasington, J., Darby, S. E., & Sear, D. A. (2010). Accounting for uncertainty in DEMs from repeat topographic surveys: improved sediment budgets. Earth surface processes and landforms: the journal of the British Geomorphological Research Group, 35(2), 136-156. https://doi.org/10.1002/esp.1886
    151. Wolfowitz, J. (1957). The minimum distance method. The Annals of Mathematical Statistics, 75-88. https://doi.org/10.1214/aoms/1177707038
    152. Wu, C.-H. (2021). Evaluating the landslide stability and vegetation recovery: Case studies in the Tsengwen reservoir watershed in Taiwan. Water, 13(24), 3479. https://doi.org/10.3390/w13243479
    153. Wu, L., Liu, R., Ju, N. P., Zhang, A., Gou, J. S., He, G. L., & Lei, Y. Z. (2024). Landslide mapping based on a hybrid CNN-transformer network and deep transfer learning using remote sensing images with topographic and spectral features. International Journal of Applied Earth Observation and Geoinformation, 126. https://doi.org/10.1016/j.jag.2023.103612
    154. Wu, W., Zhang, Q., Singh, V. P., Wang, G., Zhao, J., Shen, Z., & Sun, S. (2022). A Data-Driven Model on Google Earth Engine for Landslide Susceptibility Assessment in the Hengduan Mountains, the Qinghai–Tibetan Plateau. Remote Sensing, 14(18). https://doi.org/10.3390/rs14184662
    155. Wubalem, A. (2021). Landslide inventory, susceptibility, hazard and risk mapping. Landslides, 164-181. https://doi.org/10.5772/intechopen.100504
    156. Xu, B., Zhang, C. J., Liu, W. C., Huang, J. W., Su, Y. J., Yang, Y. C., Jiang, W. J., & Sun, W. H. (2023). Landslide identification method based on the FKGRNet model for remote sensing images. Remote Sensing, 15(13). https://doi.org/10.3390/rs15133407
    157. Xu, C., Xu, X., Shen, L., Yao, Q., Tan, X., Kang, W., Ma, S., Wu, X., Cai, J., & Gao, M. (2016). Optimized volume models of earthquake-triggered landslides. Scientific Reports, 6(1), 29797. https://doi.org/10.1038/srep29797
    158. Yang, W., Tian, W., Mei, H., Hu, C., & Zeng, T. (2019). Design and preliminary verification of L‐band ground‐based SAR system for the vegetated area. The Journal of Engineering, 2019(19), 5707-5711.
    159. Yang, Y.-E., & Yu, T.-T. (2025). Volumetric estimation of landslide-induced terrain change using conditional GAN with multi-temporal DEMs and satellite imagery. International Journal of Applied Earth Observation and Geoinformation, 144, 104864. https://doi.org/10.1049/joe.2019.0301
    160. Yang, Y.-E., Yu, T.-T., & Chen, C.-Y. (2024). Automatic detection of landslide impact areas using Google Earth Engine. Terrestrial, Atmospheric and Oceanic Sciences, 35(1), 1-22. https://doi.org/10.1007/s44195-024-00078-2
    161. Yunus, A. P., Chen, X., Catani, F., Subramaniam, S. S., Fan, X., Dou, J., Sajinkumar, K. S., Gupta, A., & Avtar, R. (2023). Earthquake-induced soil landslides: volume estimates and uncertainties with the existing scaling exponents. Scientific Reports, 13(1), 8151. https://doi.org/10.1038/s41598-023-35088-6
    162. Zebker, H. A., & Goldstein, R. M. (1986). Topographic Mapping from Interferometric Synthetic Aperture Radar Observations. Journal of Geophysical Research-Solid Earth and Planets, 91(B5), 4993-4999. https://doi.org/10.1029/JB091iB05p04993
    163. Zhao, H., Yao, M., Deng, X., Yuan, K., Ding, F., Zeng, L., & Li, C. (2018). Antenna array simulation and detection performance analysis of Sanya prototype incoherent scatter radar. Radio Science, 53(6), 820-829. https://doi.org/10.1029/2017RS006529
    164. Zhao, J., Yu, A., Zhang, Y., Zhu, X., & Dong, Z. (2019). Spatial baseline optimization for spaceborne multistatic SAR tomography systems. Sensors, 19(9), https://doi.org/10.3390/s19092106
    165. Zhou, Z.-S., Boerner, W.-M., & Sato, M. (2004). Development of a ground-based polarimetric broadband SAR system for noninvasive ground-truth validation in vegetation monitoring. IEEE Transactions on Geoscience and Remote Sensing, 42(9), 1803-1810. https://doi.org/10.1109/TGRS.2004.832248
    166. Zhu, X. X., Tuia, D., Mou, L., Xia, G.-S., Zhang, L., Xu, F., & Fraundorfer, F. (2017). Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources. IEEE Geoscience and Remote Sensing Magazine, 5(4), 8-36. https://doi.org/10.1109/MGRS.2017.2762307
    167. Zupanc, A. (2017). Improving cloud detection with machine learning. Zupanc, A. Retrieved 24 February from https://medium.com/sentinel-hub/improving-cloud-detection-with-machine-learning-c09dc5d7cf13
    168. 日本地滑對策技術協會(1978).地滑對策技術設計實施要領.一卷,第二期。
    169. 方世杰(2009).阿里山公路邊坡崩壞特性調查與崩壞潛能評估模式建構之研究。﹝博士論文.國立成功大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/2234xp。
    170. 行政院農業委員會水土保持局(2021).應用地基合成孔徑雷達干涉技術於邊坡與土石流之預警機制偵測(研究計劃編號110保發-8.1-保-01-06-001(27)).行政院農業委員會水土保持局
    171. 行政院農業委員會水土保持局(2022).Gbinsar 山崩即時預警觀測標準作業程序律定與驗證(研究計劃編號111保發-8.1-保-01-06-001(17)).行政院農業委員會水土保持局
    172. 行政院農業委員會水土保持局(2023).Gb-sar 於偵測局部與大範圍地滑技術研發與驗證(研究計劃編號112保發-5.1-保-01-06-001(19)).行政院農業委員會水土保持局
    173. 李俊慧、王洪、汪學剛、燕陽(2016).Gbsar 系統的發展及其形變監測應用.太赫茲科學與電子資訊學報,14(5),723-728。
    174. 李錫堤、黃健政(2005).區域性山坡穩定分析之回顧與展望.地工技術,第104期,第33-52頁。
    175. 李馨慈(2010).重大地震地表擾動衰減特性於震後高強度降雨之山崩潛勢分析(未發表的博士論文論文):國立成功大學資源工程學系。
    176. 林文賜、林昭遠、黃碧慧、周文杰(2008).應用類神經網路及模糊理論於崩塌地萃取模式建立之研究.中華水土保持學報,39(1),1-9。
    177. 林芬玲、林家榮、林昭遠(2008).集水區崩塌潛勢劃定之研究.水土保持學報,40:4,439-453。
    178. 林穎東、張國楨、楊啟見(2018).利用物件式導向進行崩塌地種類判釋, 復育追蹤—以高雄市寶來地區為例.Journal of Chinese Soil and Water Conservation,49(2),98-109。
    179. 國家災害防救科技中心(2025).山崩、土石流、坡地災害潛勢.取自https://dmap.ncdr.nat.gov.tw/1109/disaster-topics/%E5%B1%B1%E5%B4%A9-%E5%9C%9F%E7%9F%B3%E6%B5%81-%E5%9D%A1%E5%9C%B0%E7%81%BD%E5%AE%B3%E6%BD%9B%E5%8B%A2/
    180. 莊文星(2011,2011-12-01).亂石崩雲後的臺灣地形──莫拉克颱風六龜遊客中心存亡錄.取自https://content.teldap.tw/index/blog/?p=3291
    181. 黃文仁、徐弘明、許中立(2010).倒傳遞類神經網路法模擬崩塌滑移特性.坡地防災學報,9(1),33-42。
    182. 楊宇恩、余騰鐸、林彥均(2024).線性地基合成孔徑雷達技術在露天礦場與自然邊坡監測實際應用與技術限制.鑛冶:中國鑛冶工程學會會刊,68(2),11-20。
    183. 楊智堯(1999).類神經網路於邊坡破壞潛能分析之應用研究(未發表的碩士論文論文):國立成功大學土木工程學系。
    184. 楊樹榮、林忠志、鄭錦桐、潘國樑、蔡如君、李正利(2011).臺灣常用山崩分類系統:第十四屆大地工程研討會。
    185. 溫振宇(2005).結合地震與颱風因子之山崩模式分析(未發表的碩士論文論文):國立成功大學地球科學系。
    186. 農業部農村發展及水土保持署(2025).土石流&土石流災害.取自https://246.ardswc.gov.tw/Info/Debris_Definition
    187. 廖瑞堂、陳昭維、紀宗吉、林錫宏(2013).由臺灣監測案例探討邊坡位移量之管理值.地工技術,第136期,第59-70頁。
    188. 羅昱婷(2010).證據權重法運用於預測崩塌地潛勢之研究--以大漢溪集水區為例。

    QR CODE