| 研究生: |
陳育附 Chen, Yu-Fu |
|---|---|
| 論文名稱: |
凝膠成型之食品三維列印機台整合研究 Research on Integration of Food 3D Printing for Gel Forming |
| 指導教授: |
賴維祥
Lai, Wei-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 食品三維列印 、積層製造 、凝膠 、自動恆溫控制點膠機 |
| 外文關鍵詞: | Food three-dimensional printer, Additive manufacturing, Gel material, Dispenser. |
| 相關次數: | 點閱:43 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
食品三維列印是將積層製造的技術應用於食品,而目前食品三維列印機可印製出多種食材,但更換不同的食材必須改變材料的添加配方以及列印參數,因此本研究將開發出印製凝膠外殼之食品三維列印機,印製出凝膠外殼再置入食材,簡化列印前的繁雜步驟。
本研究分為兩大部分,第一部分是機台整合,第二部分是列印參數優化。選擇材料擠製成型的塑料三維列印機來改裝,將把自動恆溫控制點膠機作為三維列印機台的擠出機構,此部分要讓兩台機台之間作通訊轉換,將機台列印時發出擠出控制訊號轉換為點膠機的擠出控制訊號,成功整合兩個機台,且將機台改裝為遠端進料,能夠增加儲存料槽的容量,不被機台負重能力而限制物件大小。
第二部分為參數優化,經過不斷的實驗迭代,通過改變軸移動速度及擠出壓力的參數,找出較佳的參數實驗數據,方形測試顯示了在氣壓4kg/cm2、軸移動速度180mm/min,讓凝膠材料成功列印出幾何殼狀的物件,最後實驗三維圖形堆疊列印,對於下寬上窄的實心圖形,列印成功成型,且堆疊狀態良好,可疊到高度20mm;對於下窄上寬的疊堆成型,上方圖形對於下方圖形有一定限制,角度大約不得低於約59°。
Recently, 3D food printers on the market are capable of printing various kinds of food, but printing parameters will be changed, which depend on ingredients. Therefore, to simplify the preparation progress, this research aims to develop a printer to be able to print edible gel-shells, in which various kinds of ingredients can be replaced.
The whole research is separted into two parts. The first part, a material extrusion plastic 3D printer is selected as the foundation, then a dispenser with an auto-thermostat function as extrusion mechanism is further integrated. To successfully integrate these machines, it requires transforming the communication between them; Extrusion control signals from the printer are converted into dispensing control signals for the dispenser during the printing process. To acquire a bigger tank, the machine is modified with remote material feeding so that the size of the ingredient would not be limited by the load capacity.
The second part, the optimization parameters from experiment data is found by continuous iteration as the axial movement and the extrusion pressure until the machine successfully printed out geometrical shell objects. The printing process has the best performance under the air pressure at 4 kg/cm2 and the axis moving velocity at 180 mm/min. In order to print successfully, the experiment will let the upper layer offset distance to find the maximum critical angle which are 59 degrees.
[1] J. Lipton, “Printable Food: The Technology and Its Application in Human Health,” Food Biotechnology, pp.198–201, 2017.
[2] J. Lipton, M. Cutler, F. Nigl, D. Cohen, H. Lipson, “Additive Manufacturing for The Food Industry,” Food Science & Technology pp.114-123, 2015.
[3] Materialsnet. Available: https://www.materialsnet.com.tw
[4] Fargo 3D Printing. Available: https://www.fargo3dprinting.com
[5] 3D System Technology. Available: http://www.3dsystems.com
[6] XYZ printing. Available: http://tw.xyzprinting.com
[7] Natural Machine. Available: https://www.naturalmachines.com
[8] iReviews. Available: https://goo.gl/OstTmQ
[9] J. Sun, Z. Peng, W. Zhou, Y.H. Fuh, G.S. Hong, A. Chiu, “A Review on 3D Printing for Customized Food Fabrication,” Procedia Manufacturing, Vol.1, pp.308-319, 2015.
[10] F. Wegrzyn, M. Golding, R.H. Archer, “Food Layered Manufacture: A New Process for Constructing Solid Foods,” Trends in Food Science & Technology, Vol.27, pp.66-72, 2012.
[11] J. Lipton, D. Arnold, F. Nigl, N. Lopez, D. Cohen, N. Noren, H. Lipson, “Multi-material Food Printing with Complex Internal Structure Suitable for Conventional Postprocessing,” In Proceedings of the 21st Solid Freeform Fabrication Symposium, Austin, U.S., 2011.
[12] L. Hao, S. Mellor, O. Seaman, J. Henderson, N. Sewell and M. Sloan, “Material Characterization and Process Development for Chocolate Additive Layer Manufacturing,” Virtual and Physical Prototyping, Vol.5, pp.57-64, 2010.
[13] 劉弘毅, 食品三維列印機暨凝膠材料之研究, 碩士論文,航空太空研究所,國立成功大學,台南市, 2018.
[14] I.A. Ferreira, J.L. Alves, “Low-cost 3D Food Printing,” Ciência & Tecnologia dos Materiais, pp.265–269, 2017.
[15] J. Li, G. Deng, “Technology Development and Basic Theory Study of Fluid Dispensing,” College of Mechanical and Electrical Engineering, Central South University, 2004.
[16] 鄭正元, 江卓培, 林宗翰, 林榮信, 蘇威年, 汪家昌, 蔡名忠, 賴維祥, 鄭逸琳, 洪基彬, 鄭中緯, 宋宜駿, 陳怡文, 賴信吉, 吳貞興, 許郁淞, 陳宇恩編著, 3D列印積層製造技術與應用, 全華圖書, 2017.
[17] Flux 3dp. Available: https://tw.flux3dp.com
[18] 3DPW. Available: http://3dprow.com
[19] 卓聖鵬編譯, 小型馬達的使用, 文笙書局, 1988.
[20] 蔡富吉, 蔡坤哲編著, 3D印表機自造全書, 碁峰資訊, 2014.
[21] X.B. Chen, G. Schoenau, W. J. Zhang, “Modeling of Time-Pressure Fluid Dispensing Processes,” IEEE Transactions on Electronics Packaging Manufacturing, Vol.23, pp.300-305, 2000.
[22] Montrol. Available: http://www.montrol.com.tw
[23] 聖釜電機, 電機產品綜合樣本和使用指南.
[24] 基於GRBL的CNC之A4988步進馬達驅動器篇. Available: http://marsdiy.blogspot.com/2018/05/grblcnca4988.html
[25] 林廷翰, 氣壓擠料金屬3D列印機台開發, 碩士論文, 國立台灣科技大學, 2015.
[26] 蔡官典, 植物性軟膠囊壁開發與探討, 碩士論文, 國立屏東科技大學食品科學系, 2006.