簡易檢索 / 詳目顯示

研究生: 沈宗毅
Shen, Tsung-Yi
論文名稱: 異質變異下的聯合信賴區間
Simultaneous Confidence Intervals Under Heteroscedasticity
指導教授: 溫敏杰
Wen, Minn-Jye
學位類別: 碩士
Master
系所名稱: 管理學院 - 統計學系
Department of Statistics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 42
中文關鍵詞: 不等變異不等樣本多重比較
外文關鍵詞: Unequal variances, Unequal sample sizes, Multiple comparisons
相關次數: 點閱:116下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在給定k (>= 2)個獨立母體π1, π2, . . . , πk下,假定Xij (j = 1, . . . , ni)為從平均數為μi且變異數為σi2的常態母體πi中所抽取之觀測值,其中σi2 (i = 1, . . . , k)為未知或不等變異數。一般來說,變異數分析 (ANOVA) 是用來檢定母體平均數是否相等的方法,而其前提假設為常態性、獨立性與同質變異,由於資料並非皆符合前提假設,因此 Dudewicz 與 van der Meulen (1983) 提出若資料不服從常態性的假設時,ANOVA 的 F 檢定仍會有相當穩健的檢定結果,然而,Bishop (1976) 則提出當變異數不相等時則會對檢定結果帶來相當大的影響,尤其是連樣本數也不相等的情況影響更甚。因此,一階段抽樣法被用來解決不等變異數的問題,本研究除了介紹一階段抽樣法之外,運用一階段抽樣法建立多重比較方法,並應用在實際資料上。

    Given that k (>= 2) independent populations π1, π2, . . . , πk such that observations Xij (j = 1, . . . , ni) taken from population πi are normally distributed with mean μi and unknown (and possibly unequal) variance σi2 (i = 1, . . . , k). Analysis of variance (ANOVA) test procedures are generally used to test the equality of population means, where the procedures depend on the assumptions of normality, independence, and homogeneity of variance. Dudewicz and van der Meulen (1983) has shown that violation of normality doesn’t bring much effects on the ANOVA F test. However, Bishop (1976) presented that violation of homogeneity can give serious consequences in the ANOVA F test, especially under unequal sample sizes. Therefore, a single-stage sampling procedure is used to deal with such unequal variances cases. In addition, single-stage sampling procedure is introduced and applied to multiple comparisons, and numerical examples to apply the procedure is also given.

    1 Introduction...................................................1 2 Single-Stage Sampling Procedure................................3 3 Multiple Comparisons With Each Other...........................7 3.1 All Pairwise Comparisons.....................................7 3.2 All Linear Combinations of α′is............................8 3.3 All Contrasts of μ′is......................................10 4 Multiple Comparisons With The Best Population..................11 5 Multiple Comparisons With A Control Population.................15 6 Numerical Examples.............................................20 7 Study of Single-Stage Sampling Procedure Properties............24 7.1 Initial Sample Size..........................................24 7.2 Weights......................................................25 7.3 Random Times.................................................26 8 The Two-Way Model..............................................27 9 Conclusion and Discussion......................................30 References.......................................................31 Appendix A: Tables and Figure....................................33 Appendix B: R Programs...........................................40

    1. Bishop, T. A. (1976). Heteroscedasticity ANOVA, MANOVA and multiple comparisons. Unpublished Ph.D. thesis, The Ohio State University.
    2. Bishop, T. A. (1979). Some results on simultaneous inference for analysis of variance with unequal variances. Technometrics, 21, 337-340.
    3. Bishop, T. A. and Dudewicz, E. J. (1978). Exact analysis of variance with unequal variances: test procedures and tables. Technometrics, 20, 419-430.
    4. Chen, H. J. and Dudewicz, E. J. (1976). Procedures for fixed-width interval estimation of the largest normal mean. Journal of the American Statistical Association, 71, 752-756.
    5. Chen, H. J. and Lam, K. (1989). Single-stage interval estimation of the largest normal mean under heteroscedasticity. Communications in Statistics - Theory and Methods, 18, 3703-3718.
    6. Chen, S. Y. (2001). One-stage and two-stage statistical inference under heteroscedasticity. Communications in Statistics - Simulation and Computation, 30, 991-1009.
    7. Chen, S. Y. and Chen, H. J. (1998). Single-stage analysis of variance under heteroscedasticity. Communications in Statistics - Simulation and Computation, 27, 641-666.
    8. Dudewicz, E. J., Ramberg, J. S., and Chen, H. J. (1975). New tables for multiple comparisons with a control (unknown variances). Biometrische Zeitschrift, 17, 13-76.
    9. Dudewicz, E. J. and S. R. Dalal. (1983). Multiple comparisons with a control when variances are unknown and unequal. American Journal of Mathematics and Management Sciences, 3, 275-295.
    10. Dudewicz, E. J. and van der Meulen, E. C. (1983). Entropy-based statistical inference, II: selection-of-the-best / complete ranking for continuous distributions on (0, 1), with applications to random number generators. Statistics and Decisions, 1, 131-145.
    11. Dunnett, C. W. (1955). A multiple comparison procedure for comparing several treatment with a control. Journal of the American Statistical Association, 50, 1096-1121.
    12. Dunnett, C. W. (1980). Pairwise multiple comparisons in the homogeneous variance, unequal sample size case. Journal of the American Statistical Association, 75, 789-795.
    13. Gibbons, J. D., Olkin, I., and Sobel, M. (1999, p. 51). Selecting and ordering populations: a new statistical methodology. SIAM, Philadelphia.
    14. Goldstein, L. J., Lay, D. C., Schneider, D. I., and Asmar N. H. (2007). Calculus & Its Applications, Eleventh Edition. Pearson/Prentice Hall, NJ.
    15. Hochberg, Y. and Tamhane, A. C. (1987). Multiple comparison procedures. Wiley, New York.
    16. Hsu, J. C. (1981). Simultaneous confidence intervals for all distances from the "best". Annals of Statistics, 9, 1026-1034.
    17. Hsu, J. C. (1984). Constrained simultaneous confidence intervals for multiple comparisons with the best. Annals of Statistics, 12, 1136-1144.
    18. Hsu, J. C. (1996). Multiple comparisons: theory and methods. Chapman and Hall, London.
    19. Lind, D. A., Marchal, W. G., and Mason, R. D. (2002, p. 445). Statistical techniques in business & economics, Eleventh Edition. McGraw-Hill, New York.
    20. Miller, R. G., Jr. (1980, p. 43-45, 63). Simultaneous statistical inference, Second Edition. Springer-Verlag, New York.
    21. Price, L. H., Charney, D. S., Rubin A. L., and Heninger, F. R. (1986). alpha_2-adrenergic receptor function in depression: the cortisol response to yohimbine. Arch. Gen. Psychiatry, 43, 849-858.
    22. Rafter, J. A., Abell, M. L., and Braselton, J. P. (2002). Multiple comparison methods for means. SIAM review, 44, 259-278.
    23. Siegel, A. F. (2000, p. 639). Practical business statistics, Fourth Edition. McGraw-Hill, Boston.
    24. Stein, C. (1945). A two-stage test for a linear hypothesis whose power is independent of variance. Annals of Mathematical Statistics, 16, 243-258.
    25. Winer, B. J., Brown, D. R., and Michels, K. M. (1991, p. 117-118). Statistical principles in experimental design, Third Edition. McGraw-Hill, New York.
    26. Wen, M. J. and Chen, H. J. (1994). Single-stage multiple comparison procedures under heteroscedasticity. American Journal of Mathematical and Management Sciences, 14, 1-48.

    下載圖示 校內:2012-06-09公開
    校外:2012-06-09公開
    QR CODE