簡易檢索 / 詳目顯示

研究生: 許心怡
Hsu, Hsin-I
論文名稱: 人類CD93重組蛋白類凝集素功能區蛋白在發炎上之功能性探討
Functional Studies of Recombinant CD93 Lectin-like Domain in Inflammation
指導教授: 施桂月
Shi, Guey-Yueh
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 68
中文關鍵詞: 類凝集素功能區
外文關鍵詞: CD93
相關次數: 點閱:38下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • CD93 為一個表現在骨髓細胞上的穿膜蛋白,會透過巨噬細胞吞噬凋亡細胞的作用而參與發炎過程。CD93 具有五個不同功能的區域,分別為類凝集素功能區、五個表皮生長因子重複的功能區、黏液素功能區、穿膜功能區,以及一個細胞內尾端。根據先前的文獻指出,人類單核球細胞在脂多醣刺激過後,在其細胞培養液裡發現含有類凝集素功能區的CD93蛋白片段 (CD93-D1),這代表在發炎時人類單核球細胞膜上的CD93會被切離。然而,此CD93的凝集素功能區在發炎過程所扮演的角色仍然不清楚。在我們的實驗當中,C57BL/6 老鼠在脂多醣刺激後,其血清中CD93的表現量會增加。進一步我們想要了解CD93表現量增加所代表的生理意義及參與的機制為何。首先,利用哺乳類表現系統表現出CD93類凝集素重組蛋白 (rCD93-D1)。接著利用尾靜脈注射方式,將rCD93-D1 注入C57BL/6 老鼠體內,再以腹腔注射將脂多醣注入C57BL/6 老鼠體內。結果發現血液中的細胞激素以及肺部浸潤的多型核中性白血球細胞數都有下降的趨勢。同時在酵素結合免疫吸附分析結果中,也發現rCD93-D1和脂多醣間具有結合的能力。進一步先將rCD93-D1 和脂多醣混合作用,再分別刺激人類單核球細胞以及硫醇乙酸誘導過後的老鼠腹腔細胞。結果顯示,在rCD93-D1的作用下,培養液中細胞激素的濃度會下降。我們的研究也證實rCD93-D1可以促進巨噬細胞吞噬凋亡細胞。從以上結果,我們可以推論,在發炎的過程中,rCD93-D1透過和結合脂多醣以及促進巨噬細胞吞噬凋亡細胞,而發揮抑制發炎的功能。

    CD93 is a transmembrane glycoprotein which is expressed on myeloid cells and is involved in inflammatory response via assisting macrophages to engulf apoptotic cells. CD93 is consisted of five different functional domains including a C-type lectin-like domain (domain 1; D1), a multiple epidermal growth factor-like repeats (domain 2; D2), a mucin-like domain (domain 3; D3), a transmembrane domain (domain 4; D4), and a cytoplasmic domain (domain 5; D5). Previous studies showed that different length of D1-containing CD93 fragments (sCD93-D1) were identified in the conditioned medium of human monocytes which were challenged with lipopolysaccharide (LPS) in vitro, suggesting that these sCD93-D1 may be shed from monocytes during inflammation. However, the functions of the lectin-like domain of CD93 in LPS-induced inflammation are mostly unknown. In this study, we found that soluble fragments of CD93 were detected in the serum of LPS-challenged mice. Therefore, we prepared recombinant CD93-D1 protein (rCD93-D1) by a mammalian expression system to dissect the effect of rCD93-D1 in inflammation. We found that intravenous administration of rCD93-D1 into LPS-challenged mice could significantly suppress the release of cytokines in serum and the infiltration of polymorphonuclear cells in lung tissue. We also showed that pre-incubation of rCD93-D1 with LPS could decrease LPS-induced elevations of cytokines in THP-1 cells and thioglycollate-elicited peritoneal cells. Furthermore, rCD93-D1 could dose-dependently bind to LPS in an ELISA assay, suggesting that rCD93-D1 may function as an anti-inflammatory factor through neutralization of LPS. We also found that rCD93-D1 enhanced phagocytosis percentages of apoptotic cells. In conclusion, we demonstrated that the rCD93-D1 may play an anti-inflammatory role in neutralizing LPS-induced inflammation and in phagocytosis of apoptotic cells by thioglycollate-elicited peritoneal macrophages.

    中文摘要........................1 Abstract..........................2 Abbreviation...........................6 Introduction.........................8 Materials and Methods.......................15 Preparation of rCD93-D1 Protein....................15 CD93 expression in animals and systemic sepsis models...........21 Animals and systemic sepsis models.....................22 TNF-α and IL-6 detection of mice sera....................23 THP-1 cells culture.........................24 TNF-α detection of THP-1 cells......................25 Induction and culturing of TG-elicited peritoneal macrophages..........26 TNF-α and IL-6 detection of TG-elicited peritoneal macrophage......................27 LPS binding assay..........................28 Jurkat-T cell culture..........................29 Phagocytosis assay............................30 Results ...............................32 Discussion ............................38 References..........................................41 Figures and Legends ......................46 Reagents, Drug and Chemicals ....................56 Instruments ............................59 Appendixes .............................61 Resume.............................68

    1 Young KR, Jr., Ambrus JL, Jr., Malbran A, Fauci AS, Tenner AJ. Complement subcomponent C1q stimulates Ig production by human B lymphocytes. J Immunol. 1991; 146: 3356-64.
    2 van den Berg RH, Faber-Krol MC, Sim RB, Daha MR. The first subcomponent of complement, C1q, triggers the production of IL-8, IL-6, and monocyte chemoattractant peptide-1 by human umbilical vein endothelial cells. J Immunol. 1998; 161: 6924-30.
    3 Bobak DA, Gaither TA, Frank MM, Tenner AJ. Modulation of FcR function by complement: subcomponent C1q enhances the phagocytosis of IgG-opsonized targets by human monocytes and culture-derived macrophages. J Immunol. 1987; 138: 1150-6.
    4 Sorvillo JM, Gigli I, Pearlstein E. The effect of fibronectin on the processing of C1q- and C3b/bi-coated immune complexes by peripheral blood monocytes. J Immunol. 1986; 136: 1023-6.
    5 Guan EN, Burgess WH, Robinson SL, Goodman EB, McTigue KJ, Tenner AJ. Phagocytic cell molecules that bind the collagen-like region of C1q. Involvement in the C1q-mediated enhancement of phagocytosis. J Biol Chem. 1991; 266: 20345-55.
    6 Guan E, Robinson SL, Goodman EB, Tenner AJ. Cell-surface protein identified on phagocytic cells modulates the C1q-mediated enhancement of phagocytosis. J Immunol. 1994; 152: 4005-16.
    7 Steinberger P, Szekeres A, Wille S, Stockl J, Selenko N, Prager E, Staffler G, Madic O, Stockinger H, Knapp W. Identification of human CD93 as the phagocytic C1q receptor (C1qRp) by expression cloning. J Leukoc Biol. 2002; 71: 133-40.
    8 Dean YD, McGreal EP, Akatsu H, Gasque P. Molecular and cellular properties of the rat AA4 antigen, a C-type lectin-like receptor with structural homology to thrombomodulin. J Biol Chem. 2000; 275: 34382-92.
    9 Nepomuceno RR, Henschen-Edman AH, Burgess WH, Tenner AJ. cDNA cloning and primary structure analysis of C1qR(P), the human C1q/MBL/SPA receptor that mediates enhanced phagocytosis in vitro. Immunity. 1997; 6: 119-29.
    10 Potocnik AJ, Kohler H, Eichmann K. Hemato-lymphoid in vivo reconstitution potential of subpopulations derived from in vitro differentiated embryonic stem cells. Proc Natl Acad Sci U S A. 1997; 94: 10295-300.
    11 Petrenko O, Beavis A, Klaine M, Kittappa R, Godin I, Lemischka IR. The molecular characterization of the fetal stem cell marker AA4. Immunity. 1999; 10: 691-700.
    12 Norsworthy PJ, Fossati-Jimack L, Cortes-Hernandez J, Taylor PR, Bygrave AE, Thompson RD, Nourshargh S, Walport MJ, Botto M. Murine CD93 (C1qRp) contributes to the removal of apoptotic cells in vivo but is not required for C1q-mediated enhancement of phagocytosis. J Immunol. 2004; 172: 3406-14.
    13 Kim TS, Park M, Nepomuceno RR, Palmarini G, Winokur S, Cotman CA, Bengtsson U, Tenner AJ. Characterization of the murine homolog of C1qR(P): identical cellular expression pattern, chromosomal location and functional activity of the human and murine C1qR(P). Mol Immunol. 2000; 37: 377-89.
    14 Greenlee MC, Sullivan SA, Bohlson SS. CD93 and related family members: their role in innate immunity. Curr Drug Targets. 2008; 9: 130-8.
    15 Park M, Tenner AJ. Cell surface expression of C1qRP/CD93 is stabilized by O-glycosylation. J Cell Physiol. 2003; 196: 512-22.
    16 Nepomuceno RR, Tenner AJ. C1qRP, the C1q receptor that enhances phagocytosis, is detected specifically in human cells of myeloid lineage, endothelial cells, and platelets. J Immunol. 1998; 160: 1929-35.
    17 Fonseca MI, Carpenter PM, Park M, Palmarini G, Nelson EL, Tenner AJ. C1qR(P), a myeloid cell receptor in blood, is predominantly expressed on endothelial cells in human tissue. J Leukoc Biol. 2001; 70: 793-800.
    18 Danet GH, Luongo JL, Butler G, Lu MM, Tenner AJ, Simon MC, Bonnet DA. C1qRp defines a new human stem cell population with hematopoietic and hepatic potential. Proc Natl Acad Sci U S A. 2002; 99: 10441-5.
    19 Tenner AJ. C1q interactions with cell surface receptors. Behring Inst Mitt. 1989: 220-9.
    20 Fraser DA, Laust AK, Nelson EL, Tenner AJ. C1q differentially modulates phagocytosis and cytokine responses during ingestion of apoptotic cells by human monocytes, macrophages, and dendritic cells. J Immunol. 2009; 183: 6175-85.
    21 Kishore U, Reid KB. C1q: structure, function, and receptors. Immunopharmacology. 2000; 49: 159-70.
    22 Raju TS. Terminal sugars of Fc glycans influence antibody effector functions of IgGs. Curr Opin Immunol. 2008; 20: 471-8.
    23 Pangburn MK, Ferreira VP, Cortes C. Discrimination between host and pathogens by the complement system. Vaccine. 2008; 26 Suppl 8: I15-21.
    24 McGreal EP, Ikewaki N, Akatsu H, Morgan BP, Gasque P. Human C1qRp is identical with CD93 and the mNI-11 antigen but does not bind C1q. J Immunol. 2002; 168: 5222-32.
    25 Greenlee MC, Sullivan SA, Bohlson SS. Detection and characterization of soluble CD93 released during inflammation. Inflamm Res. 2009; 58: 909-19.
    26 Tanaka M, Miyake Y. Apoptotic cell clearance and autoimmune disorder. Curr Med Chem. 2007; 14: 2892-7.
    27 Krieser RJ, White K. Engulfment mechanism of apoptotic cells. Curr Opin Cell Biol. 2002; 14: 734-8.
    28 Golpon HA, Fadok VA, Taraseviciene-Stewart L, Scerbavicius R, Sauer C, Welte T, Henson PM, Voelkel NF. Life after corpse engulfment: phagocytosis of apoptotic cells leads to VEGF secretion and cell growth. FASEB J. 2004; 18: 1716-8.
    29 Henson PM, Hume DA. Apoptotic cell removal in development and tissue homeostasis. Trends Immunol. 2006; 27: 244-50.
    30 Arribas J, Borroto A. Protein ectodomain shedding. Chem Rev. 2002; 102: 4627-38.
    31 Black RA. Tumor necrosis factor-alpha converting enzyme. Int J Biochem Cell Biol. 2002; 34: 1-5.
    32 Galkina E, Tanousis K, Preece G, Tolaini M, Kioussis D, Florey O, Haskard DO, Tedder TF, Ager A. L-selectin shedding does not regulate constitutive T cell trafficking but controls the migration pathways of antigen-activated T lymphocytes. J Exp Med. 2003; 198: 1323-35.
    33 Shi M, Dennis K, Peschon JJ, Chandrasekaran R, Mikecz K. Antibody-induced shedding of CD44 from adherent cells is linked to the assembly of the cytoskeleton. J Immunol. 2001; 167: 123-31.
    34 Fritz S, Striggow F, Reinhold D, Schluter T, Schonfeld P, Ansorge S, Bohnensack R. Phorbol ester-induced shedding of intercellular adhesion molecule-1 (ICAM-1) on erythroleukemic K 562 cells. Biochim Biophys Acta. 1996; 1312: 255-61.
    35 Ali N, Knauper V. Phorbol ester-induced shedding of the prostate cancer marker transmembrane protein with epidermal growth factor and two follistatin motifs 2 is mediated by the disintegrin and metalloproteinase-17. J Biol Chem. 2007; 282: 37378-88.
    36 Bohlson SS, Silva R, Fonseca MI, Tenner AJ. CD93 is rapidly shed from the surface of human myeloid cells and the soluble form is detected in human plasma. J Immunol. 2005; 175: 1239-47.
    37 Moosig F, Fahndrich E, Knorr-Spahr A, Bottcher S, Ritgen M, Zeuner R, Kneba M, Schroder JO. C1qRP (CD93) expression on peripheral blood monocytes in patients with systemic lupus erythematosus. Rheumatol Int. 2006; 26: 1109-12.
    38 Drickamer K, Taylor ME. Evolving views of protein glycosylation. Trends Biochem Sci. 1998; 23: 321-4.
    39 Rudd PM, Wormald MR, Dwek RA. Sugar-mediated ligand-receptor interactions in the immune system. Trends Biotechnol. 2004; 22: 524-30.
    40 Zelensky AN, Gready JE. The C-type lectin-like domain superfamily. FEBS J. 2005; 272: 6179-217.
    41 Cambi A, Figdor CG. Dual function of C-type lectin-like receptors in the immune system. Curr Opin Cell Biol. 2003; 15: 539-46.
    42 Stahl PD, Ezekowitz RA. The mannose receptor is a pattern recognition receptor involved in host defense. Curr Opin Immunol. 1998; 10: 50-5.
    43 Lepper PM, Held TK, Schneider EM, Bolke E, Gerlach H, Trautmann M. Clinical implications of antibiotic-induced endotoxin release in septic shock. Intensive Care Med. 2002; 28: 824-33.
    44 Freudenberg MA, Tchaptchet S, Keck S, Fejer G, Huber M, Schutze N, Beutler B, Galanos C. Lipopolysaccharide sensing an important factor in the innate immune response to Gram-negative bacterial infections: benefits and hazards of LPS hypersensitivity. Immunobiology. 2008; 213: 193-203.
    45 Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem. 1999; 274: 10689-92.
    46 Cavaillon JM, Annane D. Compartmentalization of the inflammatory response in sepsis and SIRS. J Endotoxin Res. 2006; 12: 151-70.
    47 Cohen J. The immunopathogenesis of sepsis. Nature. 2002; 420: 885-91.
    48 Schouten M, Wiersinga WJ, Levi M, van der Poll T. Inflammation, endothelium, and coagulation in sepsis. J Leukoc Biol. 2008; 83: 536-45.
    49 Andra J, Gutsmann T, Garidel P, Brandenburg K. Mechanisms of endotoxin neutralization by synthetic cationic compounds. J Endotoxin Res. 2006; 12: 261-77. 50 Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001; 29: 1303-10.
    51 Hayashida K, Kume N, Minami M, Kita T. Lectin-like oxidized LDL receptor-1 (LOX-1) supports adhesion of mononuclear leukocytes and a monocyte-like cell line THP-1 cells under static and flow conditions. FEBS Lett. 2002; 511: 133-8.
    52 Van de Wouwer M, Plaisance S, De Vriese A, Waelkens E, Collen D, Persson J, Daha MR, Conway EM. The lectin-like domain of thrombomodulin interferes with complement activation and protects against arthritis. J Thromb Haemost. 2006; 4: 1813-24.
    53 Pyz E, Marshall AS, Gordon S, Brown GD. C-type lectin-like receptors on myeloid cells. Ann Med. 2006; 38: 242-51.
    54 van Lookeren Campagne M, Wiesmann C, Brown EJ. Macrophage complement receptors and pathogen clearance. Cell Microbiol. 2007; 9: 2095-102.
    55 Shi CS, Shi GY, Hsiao SM, Kao YC, Kuo KL, Ma CY, Kuo CH, Chang BI, Chang CF, Lin CH, Wong CH, Wu HL. Lectin-like domain of thrombomodulin binds to its specific ligand Lewis Y antigen and neutralizes lipopolysaccharide-induced inflammatory response. Blood. 2008; 112: 3661-70.
    56 Serhan CN, Brain SD, Buckley CD, Gilroy DW, Haslett C, O'Neill LA, Perretti M, Rossi AG, Wallace JL. Resolution of inflammation: state of the art, definitions and terms. FASEB J. 2007; 21: 325-32.
    57 Paus EJ, Willey J, Ridge RJ, Legg CR, Finkelman MA, Novitsky TJ, Ketchum PA. Production of recombinant endotoxin neutralizing protein in Pichia pastoris and methods for its purification. Protein Expr Purif. 2002; 26: 202-10.
    58 Serhan CN, Savill J. Resolution of inflammation: the beginning programs the end. Nat Immunol. 2005; 6: 1191-7.
    59 Navratil JS, Watkins SC, Wisnieski JJ, Ahearn JM. The globular heads of C1q specifically recognize surface blebs of apoptotic vascular endothelial cells. J Immunol. 2001; 166: 3231-9.
    60 Garton KJ, Gough PJ, Raines EW. Emerging roles for ectodomain shedding in the regulation of inflammatory responses. J Leukoc Biol. 2006;
    61 Hopkins SJ. The pathophysiological role of cytokines. Leg Med (Tokyo). 2003; 5 Suppl 1: S45-57.
    62 Maderna P, Godson C. Phagocytosis of apoptotic cells and the resolution of inflammation. Biochim Biophys Acta. 2003; 1639: 141-51.
    63 Jiang W, Bell CW, Pisetsky DS. The relationship between apoptosis and high-mobility group protein 1 release from murine macrophages stimulated with lipopolysaccharide or polyinosinic-polycytidylic acid. J Immunol. 2007; 178: 6495-503.

    無法下載圖示 校內:2020-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE