簡易檢索 / 詳目顯示

研究生: 鍾英鳳
Chung, Ying-Feng
論文名稱: 養灘海域漂沙濃度擴散之研究
The Dispersion of Sand Concentration in Beach Nourishment
指導教授: 許泰文
Hsu, Tai-Wen
黃清哲
Huang, Ching-Jer
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系碩士在職專班
Department of Hydraulic & Ocean Engineering (on the job class)
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 55
中文關鍵詞: 擴散漂沙濃度養灘
外文關鍵詞: sand concentration, sand dispersion, nourishment
相關次數: 點閱:88下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   為了解養灘時漂沙濃度擴散情形,以作為未來工程設計及施工方案選擇之依據,本研究利用潮流與濃度擴散模式針對沙之不同投放位置、數量、時間及粒徑進行模擬。由模擬結果得知,連續投沙時向外海擴散之漂沙濃度將於投沙一天後達到穩定,但離岸距離將隨漲、退潮變化;而沿岸方向則會隨潮流持續擴散一段時間。在相同投沙量下之漂沙濃度範圍,短時間大量投沙將較連續少量投沙之範圍大。

      在安平商、漁港防波堤間近岸處投沙,其漂沙濃度範圍將隨投沙點與岸邊距離增加而擴大;其次,於停止投沙後漂沙濃度消散速度則離岸越近消散越快;且高漂沙濃度部分幾乎不會越過防坡堤往南。如投放於安平商港南防坡堤側,其漂沙濃度擴散範圍較放在二防坡堤間大,且會因防波堤產生向海擴散之情形。而投沙點離南防波堤越遠,漂沙濃度沿岸擴散範圍愈大,但垂直海岸方向則逐漸呈現定值。另如投入沙粒徑愈小,則漂沙濃度擴散範圍越大,且沉降時間長,故高濃度影響之時間亦較長。在本海域近岸區投放 之沙,停止投沙4天後,中心漂沙濃度均降至1,000 PPM以下。因此在料源不理想時,要減少養灘漂沙擴散需慎選投沙地點,設置阻砂設施如突堤、離岸堤或潛堤及配合海氣象條件方可成功。

      This study is intended to probe the behaviour of sand dispersion in beach nourishment; the results may be useful for design and construction of marine works. A composite model of tidal current and concentration dispersion is employed to simulate beach nourishment with various placing locations, quantities, times and particle diameters of sand. To point placing case, the study outlines that the sand concentratuon is dispersed forward to offshore becoming stable after 24 hours of continue dumping, but varied with the distance and the difference of ebb or flood current. Nevertheless, the dispersion continues to growth along the long shore direction. If the sand placing quantity was designed to be a constant value, the instant placing disperses to far area than continuous placing.

      While the sand is dumped in the near-shore area between breakwaters of An-ping Fishing Port and An-ping Commercial Port, the sand concentration could affect wider areas when the placing location gets farther away from the coastal line. Secondly, the closer to the shore the placing location is, the faster the dispersion occurs after sand placing is stopped, and the high sand concentration is bonded within these two breakwaters and will not pass through the southern breakwater line of An-ping Commercial Port even in flood. However, if sand is placed near the outside of southern breakwater of An-ping Commercial Port, wider areas of dispersion would appear and sand concentration would disperse offshore because of the sheltering of the breakwater. Moreover, when the sand placing location gets farther away from the southern breakwater, sand concentration disperses more widely along the long shore direction, but the variation in the cross direction approaches to a constant value. Finally, the particle size also affects dispersion clearly. The finer the sand particle is, the wider the dispersion area is; and high concentration influences longer because the sedimentation of fine sand particles takes a longer time. In this study the medium diameter is taken as 0.25 mm, and the concentration at the center of sand placing area is reduced to 1,000PPM after 4 days of sand placed. It is concluded that the successful design of beach nourishment project depends on the placing location, the coastal facilities such as groins, detached breakwaters and submerged breakwaters as well as sea climate for the shortage of sediments resources.

    中文摘要……………………………………………………………………… Ⅰ 英文摘要……………………………………………………………………… Ⅱ 誌謝…………………………………………………………………………… Ⅳ 目錄…………………………………………………………………………… Ⅴ 表目錄………………………………………………………………………… Ⅶ 圖目錄………………………………………………………………………… Ⅷ 符號說明……………………………………………………………………… XI 第一章 緒論………………………………………………………………… 1   研究目的………………………………………………………………… 1   前人研究………………………………………………………………… 2   本文組織………………………………………………………………… 9 第二章 數值模式…………………………………………………………… 11   潮流控制方程式………………………………………………………… 11   擴散控制方程式………………………………………………………… 14   潮流模式之數值方法…………………………………………………… 15   擴散模式之數值方法…………………………………………………… 18 第三章 模式驗證及應用…………………………………………………… 20   海潮流之驗證…………………………………………………………… 20   擴散模式之驗證………………………………………………………… 27   模式應用………………………………………………………………… 29 第四章 結果與討論………………………………………………………… 35   潮流之特性……………………………………………………………… 35   漂沙濃度擴散…………………………………………………………… 39 第五章 結論與建議………………………………………………………… 50   結論……………………………………………………………………… 50   建議……………………………………………………………………… 51 參考文獻……………………………………………………………………… 53

    1.Browder, A.E. and Dean, R.G., “Monitoring and Comparison to Predictive Models of the Perdido Key Beach Nourishment Project , Florida”, Coastal Eng., Vol. 39 , pp 173–191 (2000).

    2.Bowden, K.F., “Horizontal Mixing in the Sea due to a Shearing Current” (1964).

    3.Chief, S.H., “Two Dimensional Model of Thermal Discharges” (1985).

    4.Elder, J.W., “The Dispersion of Marked Fluid in Turbulent Shear Flow”, Journal of Fluid Mechanics, Vol. 5, pp. 585-609 (1959).

    5.Fischer, List, Koh, Imberger, and Brooks, “Mixing in Inland and Coastal Waters”, Academic , pp. 7-8, 50-54 (1979).

    6.Koh, R.C.Y, and Brooks, N.H., “Fliud Mechanics of Waste-water Disposal in the Ocean”, Annual Review of Fluid Mechanics, Vol.7, pp. 109-133 (1975) .

    7.Kawahara, M., Nakazawa, S. ,Ohmori, S. and Tagaki, T., “Two-Step Explicit Finite Element Method for Storm Surge Propagation Analysis,” International Journal for Numerical Methods in Engineering, Vol. 15, pp. 1129-1148 (1980).

    8.Kawahara, M., Hirano, H., Tsubota. K. and Inagaki, K., “Selective Lumping Finite Element Method for Shallow Water Flow”, International Journal for Numerical Methods in Engineering, Vol. 2, pp. 89-112 (1982).

    9.Lee, T.T., “Research Needs and Facilities Requirements”, Proc. Workshop on Shallow Water Ocean Eng. Res., Honolulu, J.K.K. Look Lab. Rep. No. 56, (1983) .

    10.Matsumoto, K., Ooe, M. and Sato, T., “Ocan Tide Model Obtained from TOPEX / POSEIDON Altimetry Data ”, Joural of Oceanorgraphy, Vol. 56, pp. 567-581 (2000).

    11.Matsumoto, K., Takanezawa, T. and Ooe, M. ”Ocean Tide Model Developed by Assimilating TOPEX / POSEIDON Altimetry Data into Hydrodynamical Model: A Global and a Regional Model around Japan”, Journal of Oceanorgraphy, Vol. 56, pp. 567-581 (2000).

    12.Nielsen, P.,“Suspended Sediment Concentrations under Wave”,Coastal Engineering, Vol. 10, pp. 23-31 (1986).

    13.Schwiderski, E.W., “On Charting Global Ocean Tides”, Geophsics and Space Physics, Vol. 18, No. 1, pp. 243-265 (1980).

    14.Sladen, J.A. and Hewitt, K.J., “Influence of Hacement Method on the In Site Density of Hydraulic Sand Fill”, Candian Geotechical Joural Vol. 26, pp. 453- 466 (1989).

    15.王秀海、葉永祥、汪熹、蕭鼎鋼、林明石、林財富、戴銘、吳義雄、莊芳村,「高雄港港埠設施平面佈置及構造之研究」,高雄港務局 (1983)。

    16.台南市政府委託財團法人成大研究發展基金會--「台南市安平漁港舊港口重建計畫環境影響說明書附錄」,pp.附9-1~附9-15(2000)。

    17.交通部高雄港務局委託交通部運輸研究所港灣技術研究中心--「安平港海氣象觀測、防波堤水工模型試驗以及數值模擬研究-第三年期末報告」(2002)。

    18.林政毅,「沙洲型海灘之形成及沿岸流分佈特性」,國立成功大學水利及海洋工程學系碩士論文(1998)。

    19.侯和雄、歐陽於慶、翁國和、黃榮鑑、楊文衡、譚天錫,「深水港新建工程海域漂沙及污染質擴散數值分析」,交通部運輸研究所(1993)。

    20.殷富,「桃園工業港興建海岸抽沙之懸浮物質擴散模擬研究」,2000兩岸港口及海岸開發研討會論文集,pp.266-273(2000)。

    21.黃開顏等36人,「高雄港第二港口開闢工程」,高雄港務局 (1976)。

    22.黃清和,「海岸防蝕對策-人工養灘之規劃設計」,港灣報導第25期, pp. 1-12(1993)。

    23.張憲國、黃金維,「以NAO99b潮汐模式預測台灣西岸潮汐之評估」,第24屆海洋工程研討會論文集,pp. 105-111(2001)。

    24.郭金棟,「海岸工程」,中國工程師手冊水利類第十篇,中國土木水利工程學會(1999)。

    25.梁曉光,「濱海抽沙造地工程」,中興工程第42期,pp. 45-61(1994)。

    26.曾哲茂、周憲德,「台中港港池擴散係數之推估」,第十七屆海洋工程研討會暨1995兩岸港口及海岸開發研討會論文集,pp. 1685-1689(1995)。

    27.曾若玄、廖克恆、許國榮,「高屏海域擴散特性之研究」,第十七屆海洋工程研討會暨1995兩岸港口及海岸開發研討會論文集,pp. 1505-1514(1995)。

    28.馮秋霞、郭大方,「工業區海域及近岸河口水理水質模式的驗證及應用」濱海工業區調查研究與規劃設計施工成果發表研討會論文集,經濟部工業局及國立成功大學水工試驗所,pp. 291-309(2001)。

    29.彭雯章,「波浪作用下細沙質海床上土壤液化反應與懸浮質漂沙濃度特性實驗」,國立成功大學水利及海洋工程學系碩士論文(2000)。

    30.楊文衡、盧春森,「溫排水遠域擴散之研究」,八十六年度海岸工程數值模式研討會論文集,台灣省交通處港灣技術研究所,pp. 245-260. (1997)。

    31.蔡宏宗,「台灣西部近岸抽沙回填土壤液化潛能之研究」碩士論文,國立海洋大學河海工程研究所(1993)。

    32.鄧耀里、蘇榮昌、陳宜清、龔誠山,「海域抽沙懸浮細料模擬及其對海域生態影響研究」,第十七屆海洋工程研討會暨1995兩岸港口及海岸開發研討會論文集,pp. 1583-1597(1995)。

    33.簡連貴,「水力抽沙造地與回填土壤特性之探討」, 八十五年度港灣大地工程研討會論文集,台灣省交通處港灣技術研究所,pp. 8-1-8-28. (1996)。

    34.謝勝彥、陳春宏、簡連貴、張志新,「基隆和員山子分洪引水隧道工程案」,2002(24屆)海洋工程研討會專題講座論文集,pp. 157-179(2002)。

    35.魏兆歆、侯和雄、張國棟,「大林埔外海溢油擴散行為及海岸漂沙調查研究報告」,國立高雄海事專科學校,研究報告008(1989)。

    36.龔政、葉姍霈、陳永平、高家俊,「連雲港污染物擴散數值類比」,第23屆海洋工程研討會論文集,台灣海洋工程學會,pp. 422-428(2001)。

    下載圖示 校內:立即公開
    校外:2003-01-21公開
    QR CODE