| 研究生: |
吳怡虹 Wu, Yi-Hung |
|---|---|
| 論文名稱: |
重金屬對無機廢棄物燒製富貝萊土水泥之影響 The effects of heavy metal on the production of belite-rich cement using inorganic wastes |
| 指導教授: |
張祖恩
Chang, Juu-En |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 水化行為 、因子實驗設計 、β-C2S 、無機廢棄物 、重金屬污泥 |
| 外文關鍵詞: | hydration, β-C2S, factor experimental design, heavy metal sludge, inorganic wastes |
| 相關次數: | 點閱:94 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為減少水泥產業耗用大量之原料與能源,尋找可替代原料及降低燒結溫度為目前之重要課題。本研究以具有水泥資材化潛力之牡蠣殼、稻殼、淨水污泥及轉爐石進行生料調配,控制水泥化學參數,並添加電鍍污泥作為穩定β-C2S 之離子來源燒製富貝萊土水泥(BRC),最後再以不同比例混拌普通卜特蘭水泥(OPC)進行水泥試體之水化特性試驗,以驗證燒成之BRC 在實際工程應用之可行性。
結果顯示在生料化學參數設定為LSF = 0.75、SR = 4 時,燒成熟料之C2S 達最大含量約為75 wt.%,但其中仍有少部分不具水化能力之γ-C2S。以因子實驗設計探討重金屬穩定β-C2S 之作用,發現Cr2O3 之影響最為顯著,NiO 次之,若考慮交互作用則同時添加CuO 與ZnO 及Cr2O3 與ZnO亦為顯著影響因子。此外,添加電鍍污泥調配生料之研究證實,電鍍污泥之重金屬可有效穩定β-C2S,對照未添加電鍍污泥之燒成熟料,當添加量達14 wt.%時,可使γ-C2S 由7.8 wt.%降至0.3 wt.%,且使β-C2S 由63.4 wt.%增加至77.6 wt.%,有效提升熟料水化活性產物。在水化特性試驗方面,當BRC/OPC 混拌比例在4/6 以下,其抗壓強度皆符合CNS 第I 型水泥之標準規範,而混拌比例為8/2 之水泥試體,其7 天後強度發展明顯提升,至28天之抗壓強度則亦超過CNS 第IV 型水泥之標準規範。搭配晶相消長,可
印證熟料水化反應之進行並生成水化產物,由微觀結構可知混拌水泥之水
化產物有Ca(OH)2、鈣釩石(AFt)、單硫鋁酸鈣(AFm)及C-S-H 膠體。
To reduce the consumption of raw materials and energy in the cement industry, finding the alternative raw materials and reducing the sintering temperature are important issues at the moment. In this study, the potential cement materials such as oyster shell, rice husk, water treatment plant sludge, and Basic Oxygen Furnace slag are utilized as cement raw materials. Cement chemical parameters were controlled and electroplating sludge was added as a source of ion to stabilize the β-C2S thus produces belite-rich cement (BRC). Finally, to verify the feasibility of BRC in the engineering application, the pastes are mixed in different proportions to BRC and ordinary Portland cement (OPC) and undergo the test of hydration characteristics.
The results show that the largest amount of C2S phase in the clinker is about 75 wt.%, when the chemical parameters of raw material settings are LSF = 0.75, SR = 4. But some of γ-C2S still remains inactive with water. Factor experimental design was used to exam the role of heavy metals on β-C2S stabilization, and the effect of Cr2O3 was found to be the most significant, and followed by NiO. For factors interaction assessment, addition of CuO and ZnO as well as Cr2O3 and ZnO are also considered as significant factors. In addition, the research of utilizing electroplating sludge as a part of raw materials confirms that the heavy metals in electroplating sludge have a stabilizing effect on β-C2S. When compared to the clinker without electroplating sludge addition; as the addition amount reaches 14 wt.%, amount of γ-C2S reduces from 7.8 wt.% to 0.3 wt.%, and amount of β-C2S increases from 63.4 wt.% to 77.6 wt.%, which effectively raised the hydration product activity of the clinker.
In the hydration characteristics test, when BRC-to-OPC ratio (B/O) is less than 4 / 6, the compressive strength of pastes are in compliance with the standard of type I cement of CNS. In addition, the compressive strength of pastes has improved significantly after 7 days, and it is also greater than the standard of type IV cement of CNS at 28 days when the BRC-to-OPC ratio is 8 / 2. With the crystal phase rise and fall, it can be confirmed that the hydration of the clinker is ongoing and the hydration products are generated. Obtained from the microstructure, the hydration products in cements are Ca(OH)2, ettringite (AFt), monosulphoaluminate (AFm) and CSH gel.
Barkaati, P., Bordoloi, D., & Borthakur, P. C. (1994). Paddy husk as raw material and fuel for making portland cement. Cement and Concrete Research, 24(4), 613-620.
Bensted, J., & Barnes, P. (2002). Structure and performance of cements. New York: Spon Press.
Chan, C. J., Kriven, W. M., & Young, J. F. (1992). Physical stabilization of the β→γ transformation in dicalcium silicate. Journal American Ceramic Sociaty, 75(6), 1621-1627.
Chen, D., Yu, Y. Z., Zhu, H. J., Liu, Z. Z., & Xu, Y. F. (2008). Ferrite process of electroplating sludge and enrichment of copper by hydrothermal reaction. Separation and Purification Technology, 62 297-303.
Cullity, B. D., & Stock, S. R. (2001). Elements of x-ray diffraction. Upper Saddle: Prentice Hall.
Fukuda, K., & Ito, S. (1999). Highly reactive remelted belite. Journal American Ceramic Sociaty, 82(3), 637-640.
Fukuda, K., & Ito, S. (1999). Improvement in reactivity and grindability of belite-rich cement by remelting reaction. Journal American Ceramic Sociaty, 82(8), 2177-2180.
Gies, A., & Knoefel, D. (1986). Influence of alkalies on the composition of belite-rich cement clinkers and the technological properties of the resulting cement. Cement and Concrete Research, 16(3), 411-422.
Guinier, A., Regourd, M., Bigare, M., & Forest, J. (1969). Synthesis and crystallographic investigation of some belites. Proceedings ofthe 5th Inremutionul Sympo.Yium on the Chemistry, 1, 1-10.
Hewlett, P. C., (1998). Lea’s Chemistry of Cement and Concrete. New York: Arnold.
Jenkins, R., & R.L. Snyder, (1996). Introduction to X-ray Powder Diffractometry. John Wiley & Sons, New York.
Kantautas, A., Palubinskaite, D., & Vaickelionis G. (2006). Synthesis and hardening of fluoralinite cement. Materials Science, 24(21), 385-393.
Kim, Y. M., & Hong, S. H. (2004). Influence of minor ions on the stability and hydration rates of β-dicalcium silicate. Journal American Ceramic Sociaty, 87(5), 900-905.
Kolovos, K.G. (2006). Waste ammunition as secondary mineralizing raw material in Portland cement production. Cement and Concrete Composites, 28(2), 133-143.
Lai, G. C., Nojiri, T., & Nakano, K. (1992). Studies of the stability of β-Ca2SiO4 doped by minor ions. Cement and Concrete Research, 22(5), 743-754.
Maslehuddin, M., & Rahman, M. K. (2009). Properties of cement kiln dust concrete. Construction and Building Materials, 23, 2357–2361.
Morsli, K., Zahir, M., & Aranda, M. A. G. (2007). Mineralogical phase analysis of alkali and sulfate bearing belite rich laboratory clinkers. Cement and Concrete Research, 37(5), 639-646.
Murat, M., & Sorrentino, F. (1996). Effect of large additions of Cd, Pb, Cr, Zn, to cement raw meal on the composition and the properties of the clinker and the cement. Cement and Concrete Research, 26(3), 377-385
Niesel, K. (1972). The importance of the α'L-α'H transition in the polymorphism of dicalcium silicate. Silicates Industriels 37, 136.
Philippou, T., Marinos, J., & Kostakis, G. (1988). On the strength behaviour and phase composition of low lome saturation clinkers. Cement and Concrete Research, 18(5), 804-811.
Pritts, I. M., & Daugherty, K. E. (1976). The effect of stabilizing agents on the hydration rate of β-C2S. Cement and Concrete Research, 6(6), 783-795.
Shwiete, H. E., Kronert, W., & Deckert, K. (1968). Existence range and stabilization of high temperature modification of dicalciumsilicate. Zement Kalk Gips, 21(9), 359-366.
Snyder, R. L., & Bish, D. L. (1989). Quantitative analysis. In: D.L. Bish, J.E. Post (Eds.), Reviews in Mineralogy, Mineralogical Society of America, Washington, DC.
Snyder, R. L., (1992). The Use of Reference Intensity Ratios in X-ray Quantitative Analysis, Powder Diffraction, 7(4), 186-193.
Stephan, D., Maleki, H., Knöfel, D., Eber, B., & Härdtl, R. (1999) . Influence of Cr, Ni, and Zn on the properties of pure clinker phases: Part I. C3S. Cement and Concrete Research, 29(4), 545-552.
Taylor, H. F. W., (1990). Cement Chemistry. London San Diego New York: Academic Press.
Trezza, M. A., & Scian, A. N. (2007). Waste with chrome in the Portland cement clinker production. Journal of Hazardous Materials, 147(1-2), 188-196.
Tsakiridis, P. E., Agatzini-Leonardou, S., & Oustadakis, P. (2004). Red mud addition in the raw meal for the production of Portland cement clinker. Journal of Hazardous Materials, 116(1-2), 103-110.
Woermann, E., Hahn, T., & Eysel, W. (1979). Substitution of alkalies in tricalcium silicate. Cement and Concrete Research, 9(6), 701-711.
Xiuji, F., & Shizong, L. (1986). Investigation of the effect of minor ions on the stability of β-C2S and the mechanism of stabilization. Cement and Concrete Research, 16(4), 587-601.
中國鋼鐵公司,爐石利用推廣手冊,四版,2003。
王偉哲,應用廢鑄砂於控制性低強度材料產製混凝土,聯合學報第二十四期,2004。
李哲榮,牡蠣殼粉資源化做為水泥膠結材料之研究,國立臺灣海洋大學河海工程學系,碩士論文,2005。
呂恩賜,廢觸媒與卜作嵐材料共同取代部分水泥對自充填混凝土工程性質之研究,雲林科技大學營建工程系,碩士論文,2006。
林健榮,燃煤飛灰去除水中污染物行為之研究,國立成功大學環境工程學系,博士論文,2001。
陳宜晶,利用添加劑提升淨水污泥燒結之材料品質研究,逢甲大學環境工程與科學學系,碩士論文,2004。
陳宗裕,燒製參數對無機廢棄物合成水泥熟料晶相之影響,國立成功大學環境工程學系,碩士論文,2008。
黃兆龍,混凝土性質與行為,詹氏書局,三版,臺北市,2005。
黃忠信,土木材料,三民書局,臺北市,1998。
廖慕蓉,淨水污泥燒製富β-C2S水泥之研究,國立成功大學環境工程學系,碩士論文,2007。
經濟部工業局,廢鑄砂資源化應用技術手冊,2001。
龔人俠,水泥化學概論,台灣區水泥工業同業公會,臺北市,1997。