| 研究生: |
孫郁婷 Sun, Yu-ting |
|---|---|
| 論文名稱: |
含磷酸乙醇胺官能基之自我聚集性單分子層之合成、表面分析及血液相容性之研究 Synthesis, surface characterization and in vitro blood compatibility studies of the self-assembled monolayers (SAMs) containing lipid-like phosphorylethanolamine terminal group |
| 指導教授: |
林睿哲
Lin, Jui-Che |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 表面性質 、自我聚集性單分子層 、溶劑效應 、血液相容性 、化學分析電子光譜儀 |
| 外文關鍵詞: | blood compatibility, surface characterization, Self-assembled monolayers, ESCA, solvent effect |
| 相關次數: | 點閱:134 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
生醫材料對於生物體而言是屬於外來物質,因此表面改質、改善其生物相容性是重要的一環。自我聚集性單分子層提供一排列緻密之表面,且末端官能基的多樣性能讓我們選擇不同的官能基表面來進行表面性質以及血液相容性之探討。本研究以細胞膜中含量豐富的磷脂質結構為基礎,擬定以單一末端官能基(磷酸化乙醇胺)之硫醇,以不同溶劑及不同濃度形成之自我聚集性單分子層,進行表面性質及血液相容性之測試及探討,以了解溶劑對於單分子層結構及材料血液相容性之影響。
由靜態接觸角測試可發現,與未改質之金基材及末端為甲基之自我聚集性單分子層相比,含磷酸化乙醇胺之自我聚集性單分子層較為親水,其中又以在PBS中成長之自我聚集性單分子層最為親水。由化學分析電子光譜儀測試得到的結果推測,在表面因為立體效應及電荷效應使得排列紊亂,這也可以解釋其他條件成長之自我聚集性單分子層的接觸角稍微偏高之現象。由S2p圖譜可看出每一個條件之自我聚集性單分子層都有未鍵結的硫醇存在,這也可說明因立體效應造成排列紊亂之原因。
血液相容性測試方面,由掃瞄式電子顯微鏡影像圖發現在材料表面某些區域的血小板有極度活化、聚集的情形,此特殊的現象需更進一步的血液測試及研究探討。
For our bodies, the biomaterials are all foreign objects. This is very important that change the properties of the biomaterial surface which could be recognized as native or part of our bodies. Self-assembled monolayers have densely-packed and well-oriented characteristics. On the other hand, varying the terminal functional groups of the monolayers will let us understand the properties of the surface. This study is based on the structure of phospholipid, the most abundant component of the cell membrane. We use the self-assembled monolayers formed by single terminal group, phosphorylethanolamine, in different solvent and concentration to understand the surface characterization and blood compatibility.
According the result of static contact angle, we observe the SAMs with phosphorylethanolamine is more hydrophilic than the SAMs with methyl terminate and pure gold. The SAMs formed by PBS is the most hydrophilic one. From ESCA spectra, we infer that the SAMs structure disorder due to the steric hinder and charge effect. It also explains why the contact angles of PE SAMs are higher. The S2p spectra show us the unbond thiol existed in the SAMs structure. This is because the steric hinder.
Due to the steric hinder and charge effect of the SAMs surface, some defects exist in the SAMs structure. Platelets activate and aggregate in the region. In this case, we can not judge the blood compatibility from the result of the morphology and number of adhered platelets and need further investigation.
1. A. M. Rouhi, “Contemporary Biomaterials, Understanding Surfaces is Key to the Design of Clinically Useful Materials”, Chemical and Engineering News, 77, 51-59, 1990.
2. R. G. Nuzzo, D. L. Allara, “Adsorption of Bifunctional Organic Disulfides on Gold Surfaces”, J. Am. Chem. Soc., 105, 4481-4483, 1983.
3. R. G. Nuzzo, L. H. Dubois, D. L. Allara, “Fundamental Studies of Microscopic Wetting on Organic Surfaces. 1. Formation and Structural Characterization of a Self-Consistent Series of Polyfunctional Organic Monolayers”, J. Am. Chem. Soc., 112, 558-569, 1990.
4. C. D. Bain, E. B. Troughton, Y. T. Tao, J. Evall, G. M. Whitesides, R. G. Nuzzo, “Formation of Monolayer Films by the Spontaneous Assembly of Organic Thiols from Solution onto Gold”, J. Am. Chem. Soc., 111, 321-335, 1989.
5. C. D. Bain, J. Evall, G. M. Whitesides, “Formation of Monolayers by the Coadsorption of Thiols on Gold: Variation in the Head Group, Tail Group, and Solvent”, J. Am. Chem. Soc., 111, 7155-7164, 1989.
6. P. E. Laibinis, G. M. Whitesides, D. L. Allara, Y. T. Tao, A. N. Parikh, R. G. Nuzzo, “Comparison of the Structures and Wetting Properties of Self-Assembled Monolayers on n-Alkanethiols on the Coinage Metal Surfaces, Cu, Ag, Au”, J. Am. Chem. Soc., 113, 7152-7167, 1991.
7. M. Himmelhaus, I. Gauss, M. Buck, F. Eisert, Ch. Wöll, M. Grunze, “Adsorption of Docosanethiol from Solution on Polycrystalline Silver Surfaces: An XPS and NEXAFS Study1”, J. Electron. Spectrsc. Relat. Phenom., 92, 139-149, 1998.
8. M. G. Samant, C. A. Brown, J. G. Gordon, “Structure of an Ordered Self-Assembled Monolayer of Docosyl Mercaptan on Gold (111) by Surface X-ray Diffraction”, Langmuir, 17(3), 437-439, 1991.
9. G. E. Poirier, E. D. Pylant, “The Self-Assembly Mechanism of Alkanethiols on Au(111)”, Science, 272, 1145-1148, 1996.
10. G. E. Poirier, “Coverage-Dependent Phases and Phase Stability of Decanethiol on Au(111)”, Langmuir, 15, 1167-1175, 1999.
11. M. D. Porter, T. B. Bright, D. L. Allara, C. E. D. Chidsey, “Spontaneously Organized Molecular Assemblies. 4. Structural Characterization of n-Alkyl Thiol Monolayers on Gold by Optical Ellipsometry, Infrared Spectroscopy, and Electrochemistry”, J. Am. Chem. Soc., 109, 3559-3568, 1987.
12. E. B. Troughton, C. D. Bain, G. M. Whitesides, “Monolayer Films Prepared by the Spontaneous Self-Assembly of Symmetrical and Unsymmetrical Dialkyl Sulfides from Solution onto Gold Substrates: Structure, Properties, and Reactivity of Constituent Functional Groups1”, Langmuir, 4, 365-385, 1988.
13. P. E. Laibinis, G. M. Whitesides, “ω-Terminated Alkanethiolate Monolayers on Surfaces of Copper, Silver, and Gold Have Similar Wettabilities1”, J. Am. Chem. Soc., 114, 1990-1995, 1992.
14. T. Ishida, S. Tsuneda, N. Nishida, M. Hara, H. Sasabe, W. Knoll, “Surface-conditioning Effect of Gold Substrates on Octadecanethiol Self-Assembled Monolayer Growth”, Langmuir, 13, 4638-4643, 1997.
15. J. M. Courtney, N. M. K. Lamba, S. Sundaram, C. D. Forbes, “Biomaterials for Blood-contacting Applications”, Biomaterials, 15, 737-744, 1994.
16. R. E. Holmlin, X. Chen, R. G. Chapman, S. Takayama, G. M. Whitesides, “Zwitterionic SAMs that Resist Nonspecific Adsorption of Protein from Aqueous Buffer”, Langmuir, 17, 2841-2850, 2001.
17. M. Malmster, “Protein Adsorption at Phospholipid Surfaces”, J. Colloid Interface Sci., 172, 106-115, 1995.
18. M. D. Lelah, L. K. Lambrecht, B. R. Young, S. L. Cooper, “Physicochemical Characterization and in Vivo Blood Tolerability of Cast and Extruded Biomer”, J. Biomed. Mater. Res., 17, 1-22, 1983.
19. M. D. Lelah, J. A. Pierce, L. K. Lambrecht, S. L. Cooper, “Polyether-Urethane Ionomers: Surface Porperty/ex Vivo Blood Compatibility Relationships”, J. Colloid Interface Sci., 104, 422-439, 1985.
20. Y. J. Li, R. Bahulekar, T. M. Chen, Y. F. Wang, M. Kodama, T. Nakaya, “The Effect of Alkyl Chain Length of Amphiphilic Phospholipid Polyurethanes on Haemocompatibilities”, Macromol. Chem. Phys., 197, 2827-2835, 1996.
21. K. Ishihara, R. Aragaki, T. Ueda, A. watenabe, N. Nakabayashi, “Reduced Thrombogenicity of Polymers Having Phospholipid Polar Groups”, J. Biomed. Mater. Res., 24, 1067-1077, 1990.
22. A. V. Hoffbrand, J. E. Pettit, P. A. Moss, Essential Haematology 4th edition, Blackwell Science, 2001.
23. R. J. Stokes, D. F. Evans, Fundamentals of Interfacial Engineering, Willy, New York, 1997.
24. T. M. Ko, J. C. Lin, S. L. Cooper, “Surface Characterization and Platelet Adhesion Studies of Plasma-sulphonated Polyethylene”, Biomaterials, 14, 657-664, 1993.
25. A. Ulman, “Formation and Structure of Self-Assembled Monolayers”, Chem. Rev., 96, 1533-1554, 1996.
26. K. H. Cheng, B. Cannon, J. Metze, A. Lewis, J. Huang, M. W. Vaughn, “Lipid Headgroup Superlattice Modulates the Activity of Surface-Acting Cholesterol Oxidase in Ternary Phospholipid/Cholesterol Bilayers”, Biochemistry, 45, 10855-10864, 2006.
27. J. Zhang, J. Kirkham, C. Robinson, M. L. Wallwork, D. A. Smith, A. Marsh, and M. Wong, “Determination of the Ionization State of 11-Thioundecyl-1-phosphonic Acid in Self-Assembled Monolayers by Chemical Force Microscopy”, Anal. Chem., 72, 1973-1978, 2000.
28. G. S. Harbison, and R. G. Griffin, “Improved Method for the Synthesis of Phosphatidylcholines”, J. Lipid Res. 25, 1140-1142, 1984.
29. N. Katagiri, K. Itakura, S. A. Narang, “The Use of Arylsulfonyltriazoles for the Synthesis of Oligonucleotides by the Triester Approach”, J. Am. Chem. Soc., 97, 7332-7337, 1975.
30. K. L. Prime, G. M. Whitesides, “Adsorption of Proteins onto Surfaces Containing End-Attached Oligo(ethylene oxide): A Model System Using Self-Assembled Monolayers”, J. Am. Chem. Soc., 115, 10714-10721, 1993.
31. S. Yokokawa, K. Tamada, E. Ito, M. Hara, “Cationic Self-Assembled Monolayers Composed of Gemini-Structured Dithiol on Gold: A New Concept for Molecular Recognition Because of the Distance between Adsorption Sites”, J. Phys, Chem. B, 107, 3544-3551, 2003.
32. C. Roberts, C. S. Chen, M. Mrksich, V. Martichonok, D. E. Ingber, G. M. Whitesides, “Using Mixed Self -Assembled Monolayers Presenting RGD and (EG)3OH Groups To Characterize Long-Term Attachment of Bovine Capillary Endothelial Cells to Surfaces”, J. Am. Chem. Soc., 120, 6548-6555, 1998.
33. G. Dodero, L. D. Michieli, O. Cavalleri, R. Rolandi, L. Oliveri, A. Dacca, R. Parodi, “L-Cysteine Chemisorption on Gold: An XPS and STM Study”, Colloids and Surf. A: Physicochemical and Eng. Aspects, 175, 121-128, 2000.
34. D. G. Castner, K. Hinds, D. W. Grainger, “X-ray Photoelectron Spectroscopy Sulfur 2P Study of Organic Thiol and Disulfide Binding Interactions with Gold Surfaces”, Langmuir, 12, 5083-5086, 1996.
35. N. Inagaki, S. Tasaka, Y. Horikawa, “Nafion-like Thin Film Plasma-Polymerized from Perfluorobenzene/SO2 Mixture” J. Polym. Sci., 27, 3495-3501, 1989.
36. D. J. Farish, Human Biology, Jones and Bartlett Publishers, Boston, 1993.
37. C. D. Bain, E. B. Troughton, Y. T. Tao, J. Evall, G. M. Whiteside, R. G. Nuzzo, “Formation of Monolayer Films by the Spontaneous Assembly of Organic Thiols from Solution onto Gold”, J. Am. Chem. Soc., 111, 321-335, 1989.
38. K. Umemura, K. Fujita, T. Ishida, M. Hara, H. Sasabe, W. Knoll, “Solvent Effect on Domain Formation of 4-Mercaptopyridine Self-Assembled Monolayers on Au(111) Substrate by Scanning Tunneling Microscopy”, Jpn. J. Appl. Phys., 37, 3620-3625,1998.
39. R. Yamada, H. Sakai, K. Uosaki, “Solvent Effect on the Structure of the Self-Assembled Monolayer of Alkanethiol”, Chem. Letters, 28, 667-668, 1999.
40. O. Dannenberger, J. J wolff, M. Buck, “Solvent Dependence of the Self-Assembly Process of an Endgroup-Modified Alkanethiol”, Langmuir, 14, 4679-4682, 1998.
41. S. Y. Lee, J. Noh, E. Ito, H, Lee, M. Hara, “Solvent Effect of Formation of Cysteamine Self-assembled Monolayers on Au(111)”, Jpn. J. Appl. Phys., 42, 236-241, 2003.
42. Y. Arima, H. Iwata, “Effect of Wettability and Surface Functional Groups on Protein Adsorption and Cell Adhesion Using Well-Defined Mixed Self-Assembled monolayers”, Biomaterials, 28, 3047-3082, 2007.
43. C. L. Martins, B. D. Ratner, M. A. Barbosa, “Protein Adsorption on Mixture of Hydroxyl- and Methyl- Terminated Alkanethiols Self-Assembled Monolayers”, J. Biomed. Mater. Res. - Part A, 67, 158-171, 2003.
44. M. Tanahashi, T. Matsuda, “Surface Functional Group Dependence on Apatite Formation on Self-Assembled Monolayers in A Simulated Body Fluid”, J. Biomed. Mater. Res., 34, 305-315, 1997.