簡易檢索 / 詳目顯示

研究生: 鄧絜云
Deng, Jie-Yun
論文名稱: 以光固化成型技術開發原子力顯微鏡探針製程
Development of Atomic Force Microscope Probes Using Vat Photopolymerization Technology
指導教授: 劉浩志
Liu, Hao-Chih
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 85
中文關鍵詞: 積層製造光固化成型技術數位光固化處理技術光敏樹脂原子力顯微鏡高分子探針
外文關鍵詞: additive manufacturing, vat photopolymerization, digital light processing, photosensitive resin, atomic force microscope, polymer probe
相關次數: 點閱:133下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有別於傳統的減法製造,積層製造技術 (Additive manufacturing, AM) 是將材料以逐一堆疊的方式形成三維物件的加法製程,也被稱為3D列印技術。隨著3D列印技術在近年來的蓬勃發展,憑藉對複雜結構可以快速製造之優勢,逐漸取代成本高昂且時間長的減法製造。而3D列技術當中光固化成型技術 (Vat Photopolymerization, VP) 具有最佳的列印解析度,目前已普遍商業化的列印技術有立體光刻成型 (Stereo Lithography Appearance, SLA)及數位光固化處理 (Digital Light Processing , DLP),一般商用列印機的解析度在20至100 μm,要達到奈米尺度的列印解析度需要使用雙光子聚合技術 (Two-photon polymerization, TPP),但其價格昂貴因此無法被廣泛運用,因此本研究著重於將提升成本較低的SLA或DLP之解析度,以應用於微製造製程。
    本研究以DLP技術做為基礎,與合作廠商協議打造出可調焦距式的光固化3D列印機,而般市售DLP列印機的投影機焦距多為固定,DLP的列印解析度是由光源的投影設備之最小像素點所決定,透過調整投影焦距可以將列印解析度從100 μm提升5 μm。並利用高解析度的優勢將DLP光固化技術應用於原子力顯微鏡 (Atomic Force Microscope, AFM) 的探針製程開發。透過設計不同懸臂樑長度、位置及列印層厚比較應用於AFM所得到的共振頻率、品質因子及反射訊號,並設計四種切層影像列印出針頭以利後續掃描表面形貌。製程方面,透過調整成型平台的抬升速度,改善探針表面在列印過程中產生的氣泡,避免氣泡存在影響探針整體機械強度。另一方面,吾人發現在列印厚度為5 μm之懸臂樑使用任何曝光秒數皆無法成功印製,透過增加曝光面積及密度能夠改善,後續要將懸臂樑厚度縮減可以透過在周圍增設支撐結構來增加曝光面積。最後,再列印過程中發現環境濕度對列印品質會造成影響,於高濕度環境下會使光敏樹脂吸收水氣膨脹,導致列印出懸臂樑變厚而無法進行共振。
    將以Pt做為反射層之光固化探針實際於AFM進行測試,根據反射訊號強度的測試結果,光固化探針能夠達到一般商用探針的0.1-0.2倍,而約有五成的探針能夠共成功獲得共振頻率及品質因子,並比較列印出的懸臂樑厚度與兩者的關係,結果顯示並無明顯趨勢,日後續要進行更嚴謹的參數設計進行進一步的確認。最後以光固化製作之樣品進行表面形貌掃描,確認光固化探針的實用性,並成功掃描出陣列結構明顯的影像。

    Additive manufacturing (AM) is also called 3D printing, which builds three-dimensional objects by depositing layer-upon-layer materials. And vat photopolymerization (VP) is one classification of 3D printing, which has the highest resolution and excellent surface quality. Stereo lithography appearance (SLA) and digital light processing (DLP) are the most common techniques of VP in the market and their resolution can achieve 20 to 100 μm. However, the resolution is still not enough to manufacture the micro or nanostructures. Only the two-photon polymerization (TPP) technique is effective for the fabrication of 3-D structures having a resolution of 100 nm or better. But TPP is not widely applied in MEMs because of its high cost. Here we introduce the low-cost DLP 3D printer with a higher resolution to 5 μm to develop the fabrication of AFM probe. The traditional AFM probe used MEMs fabrication is time-consuming and relatively high-cost. This study will use the customized DLP printer to manufacture the AFM probe and applied in AFM topography scanning. After adjusting the resolution, printing direction, peel-off speed, and curing time, we successfully manufacture the DLP-printed probe. The reflection signal of the DLP-printed probe is 0.1 to 0.2 V, which is around 0.1 times of the commercial probe. The DLP-printed probe can be vibrated with a yield of about 50 % and the resonant frequency and quality factor are in the range of 25 to 75 kHz and 15 to 100, respectively. The result of scanning the structure of the square array shows that the DLP-printed probe can be properly used in AFM topography scanning.

    第1章 序論…………………………………………………................................1 1.1 前言………………………………………………………………………1 1.2 研究目的與動機…………………………………………………………2 第2章 文獻回顧…………………………………………………………………4 2.1 積層製造技術 (Additive Manufacturing,AM)………………………..4 2.2 光固化成型技術 (Vat Photopolymerization, VP)………………………9 2.2.1 VP之列印原理…………………………………………………….9 2.2.2 光敏樹脂…………………………………………………………11 2.2.3 TPP列印技術…………………………………………………….13 2.2.4 SLA列印技術……………………………………………………15 2.2.5 DLP列印技術……………………………………………………17 2.2.6 三種光固化列印技術之比較……………………………………19 2.3 AFM探針製造技術……………………………………………………21 第3章 研究方法與實驗步驟…………………………………………………..24 3.1 實驗架構………………………………………………………………..24 3.2 光固化探針設計………………………………………………………..25 3.3 光固化3D列印AFM探針製程………………………………………26 3.3.1 實驗藥品與儀器介紹…………………………………………….26 3.3.2 可調焦距式DLP 3D列印機……………………………………..28 3.3.3 解析度變更及校正方式………………………………………….33 3.3.4 DLP列印流程…………………………………………………….35 3.4 光固化探針應用於AFM量測………………………………………...36 3.4.1 光固化探針反射層……………………………………………….36 3.4.2 光固化探針共振頻率…………………………………………….37 3.4.3 AFM表面形貌量測………………………………………………38 第4章 實驗結果與討論………………………………………………………..39 4.1 光固化3D列印AFM探針製程………………………………………39 4.1.1 XY列印解析度之參數優化……………………………………...39 4.1.2 列印方向之參數優化…………………………………………….46 4.1.3 列印抬升高度與速度之參數優化……………………………….49 4.1.4 懸臂樑厚度之參數優化………………………………………….51 4.1.5 曝光秒數之參數優化…………………………………………….55 4.2 光固化探針製作之成果………………………………………………..61 4.2.1 不同懸臂樑設計之列印結果…………………………………….61 4.2.2 不同針尖形狀之列印結果……………………………………….63 4.3 光固化探針之測試……………………………………………………..66 4.3.1 探針反射訊號及共振頻率……………………………………….66 4.3.2 表面形貌掃描樣品製備之成果………………………………….71 4.3.3 AFM表面形貌掃描結果…………………………………………76 第5章 結論及未來展望………………………………………………………..78 5.1 結論……………………………………………………………………..78 5.2 未來展望………………………………………………………………..79 第6章 參考文獻………………………………………………………………..80

    [1] Calignano, F., et al., Overview on Additive Manufacturing Technologies. Proceedings of the IEEE, 2017. 105(4): p. 593-612.
    [2] Gibson, I., D. Rosen, and B. Stucker, Vat Photopolymerization Processes, in Additive Manufacturing Technologies. 2015. p. 63-106.
    [3] Pagac, M., et al., A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future Trends of 3D Printing. Polymers (Basel), 2021. 13(4).
    [4] Park, H.K., et al., A visible light-curable yet visible wavelength-transparent resin for stereolithography 3D printing. NPG Asia Materials, 2018. 10(4): p. 82-89.
    [5] An, H.S., et al., High-Resolution 3D Printing of Freeform, Transparent Displays in Ambient Air. Adv Sci (Weinh), 2019. 6(23): p. 1901603.
    [6] Gong, H., et al., Custom 3D printer and resin for 18 mum x 20 mum microfluidic flow channels. Lab Chip, 2017. 17(17): p. 2899-2909.
    [7] Melchels, F.P., J. Feijen, and D.W. Grijpma, A review on stereolithography and its applications in biomedical engineering. Biomaterials, 2010. 31(24): p. 6121-30.
    [8] Zhou, X., Y. Hou, and J. Lin, A review on the processing accuracy of two-photon polymerization. AIP Advances, 2015. 5(3).
    [9] Farsari, M. and B.N. Chichkov, Two-photon fabrication. Nature Photonics, 2009. 3(8): p. 450-452.
    [10] Lee, J., et al., Fabrication of Atomic Force Microscope Probe with Low Spring Constant Using SU-8 Photoresist. Japanese Journal of Applied Physics, 2003. 42(Part 2, No. 10A): p. L1171-L1174.
    [11] Yu, F., et al., Design, Fabrication, and Characterization of Polymer-Based Cantilever Probes for Atomic Force Microscopes. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2016. 34(6).
    [12] Kosterhon, M., et al., Multicolor 3D Printing of Complex Intracranial Tumors in Neurosurgery. J Vis Exp, 2020(155).
    [13] Jang, T.S., et al., 3D printing of hydrogel composite systems: Recent advances in technology for tissue engineering. Int J Bioprint, 2018. 4(1): p. 126.
    [14] Dass, A. and A. Moridi, State of the Art in Directed Energy Deposition: From Additive Manufacturing to Materials Design. Coatings, 2019. 9(7).
    [15] Boparai, K.S., R. Singh, and H. Singh, Development of rapid tooling using fused deposition modeling: a review. Rapid Prototyping Journal, 2016. 22(2): p. 281-299.
    [16] Shirazi, S.F., et al., A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing. Sci Technol Adv Mater, 2015. 16(3): p. 033502.
    [17] Gardan, J., Additive manufacturing technologies: state of the art and trends. International Journal of Production Research, 2015. 54(10): p. 3118-3132.
    [18] Dermeik, B. and N. Travitzky, Laminated Object Manufacturing of Ceramic‐Based Materials. Advanced Engineering Materials, 2020. 22(9).
    [19] Bohandy, J., B.F. Kim, and F.J. Adrian, Metal deposition from a supported metal film using an excimer laser. Journal of Applied Physics, 1986. 60(4): p. 1538-1539.
    [20] Mazumder, J., et al., Closed loop direct metal deposition: art to part. Optics and Lasers in Engineering, 2000. 34(4-6): p. 397-414.
    [21] Roy, N.K., et al., A novel microscale selective laser sintering (μ-SLS) process for the fabrication of microelectronic parts. Microsystems & Nanoengineering, 2019. 5(1).
    [22] Murphy, S.V. and A. Atala, 3D bioprinting of tissues and organs. Nat Biotechnol, 2014. 32(8): p. 773-85.
    [23] Stringer, J. and B. Derby, Limits to feature size and resolution in ink jet printing. Journal of the European Ceramic Society, 2009. 29(5): p. 913-918.
    [24] Creff, J., et al., Fabrication of 3D scaffolds reproducing intestinal epithelium topography by high-resolution 3D stereolithography. Biomaterials, 2019. 221: p. 119404.
    [25] Lim, K.S., et al., Bio-resin for high resolution lithography-based biofabrication of complex cell-laden constructs. Biofabrication, 2018. 10(3): p. 034101.
    [26] Wang, Z., et al., A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication, 2015. 7(4): p. 045009.
    [27] Shpichka, A., et al., Two-Photon Polymerization in Tissue Engineering, in Polymer and Photonic Materials Towards Biomedical Breakthroughs. 2018. p. 71-98.
    [28] Joshi-Imre, A. and S. Bauerdick, Direct-Write Ion Beam Lithography. Journal of Nanotechnology, 2014. 2014: p. 1-26.
    [29] Tan, L.J., W. Zhu, and K. Zhou, Recent Progress on Polymer Materials for Additive Manufacturing. Advanced Functional Materials, 2020. 30(43).
    [30] Santoliquido, O., P. Colombo, and A. Ortona, Additive Manufacturing of ceramic components by Digital Light Processing: A comparison between the “bottom-up” and the “top-down” approaches. Journal of the European Ceramic Society, 2019. 39(6): p. 2140-2148.
    [31] Khudyakov, I.V., Fast photopolymerization of acrylate coatings: Achievements and problems. Progress in Organic Coatings, 2018. 121: p. 151-159.
    [32] Tehfe, M., et al., Photopolymerization Reactions: On the Way to a Green and Sustainable Chemistry. Applied Sciences, 2013. 3(2): p. 490-514.
    [33] H.J.Hageman, Photoinitiators for free radical polymerization. Progress in Organic Coatings, 2001. 13(2): p. 123-150.
    [34] V.Crivello, J., UV and electron beam-induced cationic polymerization. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1999. 151(1-4): p. 8-21.
    [35] Bae, C.-J., et al., Ceramic Stereolithography: Additive Manufacturing for 3D Complex Ceramic Structures. Journal of the Korean Ceramic Society, 2017. 54(6): p. 470-477.
    [36] Zakeri, S., M. Vippola, and E. Levänen, A comprehensive review of the photopolymerization of ceramic resins used in stereolithography. Additive Manufacturing, 2020. 35.
    [37] Bogaerts, W., et al., Fabrication of photonic crystals in silicon-on-insulator using 248-nm deep UV lithography. IEEE Journal of Selected Topics in Quantum Electronics, 2002. 8(4): p. 928-934.
    [38] C.Vieu, et al., Electron beam lithography: resolution limits and applications. Applied Surface Science, 2000. 164(1-4): p. 111-117.
    [39] Chou, S.Y., Nanoimprint lithography. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 1996. 14(6).
    [40] Walther, M., et al., Terahertz metamaterials fabricated by inkjet printing. Applied Physics Letters, 2009. 95(25).
    [41] Mueller, J.B., et al., Polymerization kinetics in three-dimensional direct laser writing. Adv Mater, 2014. 26(38): p. 6566-71.
    [42] Göppert-Mayer, M., Über Elementarakte mit zwei Quantensprüngen. Annalen der Physik, 1931. 3: p. 273-294.
    [43] He, G.S., et al., Multiphoton Absorbing Materials  Molecular Designs Characterization and Application. Chemical Reviews, 2008. 108(4): p. 1245-1330.
    [44] Koo, S., Advanced Micro-Actuator/Robot Fabrication Using Ultrafast Laser Direct Writing and Its Remote Control. Applied Sciences, 2020. 10(23).
    [45] Hunt, M., et al., Harnessing Multi-Photon Absorption to Produce Three-Dimensional Magnetic Structures at the Nanoscale. Materials (Basel), 2020. 13(3).
    [46] Huang, J., Q. Qin, and J. Wang, A Review of Stereolithography: Processes and Systems. Processes, 2020. 8(9).
    [47] Quan, H., et al., Photo-curing 3D printing technique and its challenges. Bioact Mater, 2020. 5(1): p. 110-115.
    [48] Webb, P.A., A review of rapid prototyping (RP) techniques in the medical and biomedical sector. J Med Eng Technol, 2000. 24(4): p. 149-53.
    [49] Wu, M.H., J.M. Florence, and L.A. Yoder, <title>Display system architectures for digital micromirror device (DMD)-based projectors</title>, in Projection Displays II. 1996. p. 193-208.
    [50] Ge, Q., et al., Projection micro stereolithography based 3D printing and its applications. International Journal of Extreme Manufacturing, 2020. 2(2).
    [51] Binnig, G., C.F. Quate, and C. Gerber, Atomic force microscope. Phys Rev Lett, 1986. 56(9): p. 930-933.
    [52] https://www.nanosurf.com/en/support/afm-operating-principle.
    [53] Snow, E.S. and P.M. Campbell, AFM Fabrication of Sub-I 0-NanometerMetal-Oxide Devices with in Situ Control of Electrical Properties. Applied Physics Letters, 1995. 270: p. 66.
    [54] Morimoto, K., et al., Si nanofabrication using AFM field enhanced oxidation and
    anisotropic wet chemical etching. Applied Surface Science, 1997. 117/118: p. 652-659.
    [55] Chien, F.S.S., et al., Nanomachining of (110)-oriented silicon by scanning probe lithography and anisotropic wet etching. Applied Physics Letters, 1999. 75(16): p. 2429-2431.
    [56] Göring, G., et al., Tailored probes for atomic force microscopy fabricated by two-photon polymerization. Applied Physics Letters, 2016. 109(6): p. 063101.
    [57] Jung, B.J., et al., Fabrication of 15 nm curvature radius polymer tip probe on an optical fiber via two-photon polymerization and O2-plasma ashing. Current Applied Physics, 2013. 13(9): p. 2064-2069.
    [58] Kramer, R., et al., Multiscale 3D-printing of microfluidic AFM cantilevers. Lab Chip, 2020. 20(2): p. 311-319.
    [59] Wakayama, T., et al., Micro-fabrication of silicon/ceramic hybrid cantilever for atomic force microscope and sensor applications. Sensors and Actuators A: Physical, 2006. 126(1): p. 159-164.
    [60] Lee, J.H., R.K. Prud'homme, and I.A. Aksay, Cure depth in photopolymerization: Experiments and theory. Journal of Materials Research, 2001. 16(12): p. 3536-3544.
    [61] Zheng, X., et al., Design and optimization of a light-emitting diode projection micro-stereolithography three-dimensional manufacturing system. Rev Sci Instrum, 2012. 83(12): p. 125001.
    [62] Salmoria, G.V., et al., Evaluation of post-curing and laser manufacturing parameters on the properties of SOMOS 7110 photosensitive resin used in stereolithography. Materials & Design, 2009. 30(3): p. 758-763.
    [63] Hiromori, K., K. Fujii, and K. Inoue, Viscoelastic properties of denture base resins obtained by underwater test. Journal of Oral Rehabilitation, 2001. 27(6): p. 522-531.
    [64] Tuna, S.H., et al., The Evaluation of Water Sorption/Solubility on Various Acrylic Resins. Eur J Dent, 2008. 2: p. 191-197.
    [65] Wong, D.M., et al., Effect of processing method on the dimensional accuracy and water sorption of acrylic resin dentures. . prosthetic dentistry, 1999. 81(3): p. 300-304.
    [66] Bhushan, B., B. Bhushan, and Baumann, Springer handbook of nanotechnology. Vol. 2. 2007: Springer.
    [67] Fairbairn, M.W. and S.R. Moheimani. Quality factor enhancement of an atomic force microscope micro-cantilever using piezoelectric shunt control. in 2012 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). 2012. IEEE.
    [68] Okazaki, S., High resolution optical lithography or high throughput electron beam lithography: The technical struggle from the micro to the nano-fabrication evolution. Microelectronic Engineering, 2015. 133: p. 23-35.
    [69] Owen, G. and P. Rissman, Proximity effect correction for electron beam lithography by equalization of background dose. Journal of Applied Physics, 1983. 54(6): p. 3573-3581.
    [70] Wan, X. and R. Menon, Proximity-effect correction for 3D single-photon optical lithography. Appl Opt, 2016. 55(3): p. A1-7.
    [71] Canet-Ferrer, J., et al., Correction of the tip convolution effects in the imaging of nanostructures studied through scanning force microscopy. Nanotechnology, 2014. 25(39): p. 395703.

    無法下載圖示 校內:不公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE