| 研究生: |
廖敬元 Liao, Ching-Yuan |
|---|---|
| 論文名稱: |
潮汐及河川入流對泥沙傳輸影響之數值研究 A numerical investigation of sediment dynamics under meso-tidal and strongly varying hydrological conditions |
| 指導教授: |
陳佳琳
Chen, Jia-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 雲林海岸 、輸砂 、侵淤分析 、濁水溪口 、潮汐 、COAWST |
| 外文關鍵詞: | Yunlin coast, Sediment transport, Siltation and erosion analysis, Zhuoshui river mouth, Tide, COAWST |
| 相關次數: | 點閱:190 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
河口為銜接河川與海洋的交界處,受波浪、潮流、河川流量、不規則地形等因素,及其交互作用所影響,導致河口輸砂及沿岸漂砂行為十分複雜,海岸鄰近河口處造成的地形變遷也較難以模擬及預測。河川來源沉積物被河水帶出河口時,受潮汐作用而影響輸砂運動方向,河水與海水鹽度及密度不同,二水體在河口處交會時,河海水的混合或分層的情形會影響沉積物在河口處的隨海流漂移或滯留等情況。本研究透過電腦數值模式Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST),模擬雲林海域在河川與潮汐作用下,濁水溪口沿岸的輸砂情形;颱洪期模擬結果顯示,在河川洪峰流量及高泥沙濃度抵達河口,於潮汐週期作用的情況下,泥沙在漲潮時往東北方傳輸,在退潮時往西南方傳輸,颱風通過後大部分泥沙仍存於水體中,隨潮汐週期性運移,淤沙分布於河道及河口沿岸處。由基流期模擬結果顯示,河川基流期之餘流場 (Residual Flow)所顯示的優勢流向,與中央大學太空及遙測中心所研究之歷年沙洲動向相同,由東北往西南方向前進。在潮汐作用且無額外沙源供給的情境下,其地貌變遷之模擬結果顯示,於雲林沿海的三條崙沙洲以及箔子寮沙洲,面積逐漸減小且隨著時間推演有逐漸陸化之趨勢。
Estuaries are the junction between rivers and oceans, hydrodynamics are affected by waves, tides, river discharge, irregular topography, and other factors and their interaction, resulting in very complex coastal sediment transport and drifting behavior in estuaries, and the morphological changes from the estuary to nearshore are difficult to predict. When riverine sediments are carried out of the estuary by river flow, the direction of sediment transport is influenced by tidal effect, different salinity, and density distribution of water column in the estuary. COAWST(Coupled-Ocean-Atmosphere-Wave-Sediment Transport), was used to simulate the sediment transport along with the Zhuoshui river mouth in the Yunlin coast under the river discharge and tidal flow. After the passage of the typhoon, most of the suspended sediment is still a presence in the water column, with the movement caused by tidal flow, and the other sediment is deposit along the river channel and the estuary. The simulation result of the low water period shows that the dominant flow direction is from northeast to southwest, which is the same as that of the sandbar movement in the past years studied by the Center for Space and Remote Sensing Research of National Central University. Under the tidal effect and without additional sediment supply, the model results of the morphological changes show that the area of San-Tiau-Luen and Po-Tzu-Liao sandbars along Yunlin coast is gradually decreasing and moving landward.
1. Ajayamohan, R. S., & A. Rao, S. (2008). Indian Ocean Dipole Modulates the Number of Extreme Rainfall Events over India in a Warming Environment. Journal of the Meteorological Society of Japan, 86(1), 245-252. doi:10.2151/jmsj.86.245
2. Burchard, H., Schuttelaars, H. M., & Ralston, D. K. (2018). Sediment Trapping in Estuaries. Ann Rev Mar Sci, 10, 371-395. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28977760. doi:10.1146/annurev-marine-010816-060535
3. Canuto, V. M., Howard, A., Cheng, Y., & Dubovikov, M. S. (2001). Ocean Turbulence. Part I: One-Point Closure Model—Momentum and Heat Vertical Diffusivities. Journal of Physical Oceanography, 31(6), 1413-1426. doi:10.1175/1520-0485(2001)031<1413:Otpiop>2.0.Co;2
4. Chapman, D. C. (1985). Numerical Treatment of Cross-Shelf Open Boundaries in a Barotropic Coastal Ocean Model. Journal of Physical Oceanography, 15(8), 1060-1075. doi:10.1175/1520-0485(1985)015<1060:Ntocso>2.0.Co;2
5. Chien, H., Chiang, W.-S., Kao, S.-J., Liu, J., Liu, K.-K., & Liu, P. (2011). Sediment Dynamics Observed in the Jhoushuei River and Adjacent Coastal Zone in Taiwan Strait. Oceanography, 24(4), 122-131. doi:10.5670/oceanog.2011.100
6. dos Santos, V. H. M., da Silva Dias, F. J., Torres, A. R., Soares, R. A., Terto, L. C., de Castro, A. C. L., . . . Cutrim, M. V. J. (2020). Hydrodynamics and suspended particulate matter retention in macrotidal estuaries located in Amazonia-semiarid interface (Northeastern-Brazil). International Journal of Sediment Research, 35(4), 417-429. Retrieved from https://www.sciencedirect.com/science/article/abs/pii/S1001627920300263?via%3Dihub. doi:10.1016/j.ijsrc.2020.03.004
7. Durski, S. M. (2004). Vertical mixing schemes in the coastal ocean: Comparison of the level 2.5 Mellor-Yamada scheme with an enhanced version of the K profile parameterization. Journal of Geophysical Research, 109(C1). doi:10.1029/2002jc001702
8. Flather, R. A., & Davies, A. M. (1976). Note on a preliminary scheme for storm surge prediction using numerical models. Quarterly Journal of the Royal Meteorological Society, 102(431), 123-132. doi:10.1002/qj.49710243110
9. Fringer, O. B., Dawson, C. N., He, R., Ralston, D. K., & Zhang, Y. J. (2019). The future of coastal and estuarine modeling: Findings from a workshop. Ocean Modelling, 143. doi:10.1016/j.ocemod.2019.101458
10. Galperin, B., Kantha, L. H., Hassid, S., & Rosati, A. (1988). A Quasi-equilibrium Turbulent Energy Model for Geophysical Flows. Journal of the atmospheric sciences, 45(1), 55-62. doi:10.1175/1520-0469(1988)045<0055:Aqetem>2.0.Co;2
11. Geyer, W. R., & MacCready, P. (2014). The Estuarine Circulation. Annual Review of Fluid Mechanics, 46(1), 175-197. doi:10.1146/annurev-fluid-010313-141302
12. Kantha, L. H., & Clayson, C. A. (1994). An improved mixed layer model for geophysical applications. Journal of Geophysical Research, 99(C12). doi:10.1029/94jc02257
13. Kourafalou, V. H., Oey, L.-Y., Wang, J. D., & Lee, T. N. (1996). The fate of river discharge on the continental shelf: 1. Modeling the river plume and the inner shelf coastal current. Journal of Geophysical Research: Oceans, 101(C2), 3415-3434. doi:10.1029/95jc03024
14. Lee, J., Liu, J. T., Hung, C.-C., Lin, S., & Du, X. (2016). River plume induced variability of suspended particle characteristics. Marine Geology, 380, 219-230. doi:10.1016/j.margeo.2016.04.014
15. Liu, H., He, Q., Wang, Z., Weltje, G. J., & Zhang, J. (2010). Dynamics and spatial variability of near-bottom sediment exchange in the Yangtze Estuary, China. Estuarine, Coastal and Shelf Science, 86(3), 322-330. doi:10.1016/j.ecss.2009.04.020
16. Liu, H., Xu, K., Ou, Y., Bales, R., Zang, Z., & Xue, Z. G. (2020). Sediment Transport near Ship Shoal for Coastal Restoration in the Louisiana Shelf: A Model Estimate of the Year 2017–2018. Water, 12(8). doi:10.3390/w12082212
17. Liu, J. P., Liu, C. S., Xu, K. H., Milliman, J. D., Chiu, J. K., Kao, S. J., & Lin, S. W. (2008). Flux and fate of small mountainous rivers derived sediments into the Taiwan Strait. Marine Geology, 256(1-4), 65-76. doi:10.1016/j.margeo.2008.09.007
18. Mason, E., Molemaker, J., Shchepetkin, A. F., Colas, F., McWilliams, J. C., & Sangrà, P. (2010). Procedures for offline grid nesting in regional ocean models. Ocean Modelling, 35(1-2), 1-15. doi:10.1016/j.ocemod.2010.05.007
19. Mellor, G. L., & Yamada, T. (1982). Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics, 20(4). doi:10.1029/RG020i004p00851
20. Milliman, J. D., Lin, S. W., Kao, S. J., Liu, J. P., Liu, C. S., Chiu, J. K., & Lin, Y. C. (2007). Short-term changes in seafloor character due to flood-derived hyperpycnal discharge: Typhoon Mindulle, Taiwan, July 2004. Geology, 35(9). doi:10.1130/g23760a.1
21. Orlanski, I. (1976). A simple boundary condition for unbounded hyperbolic flows. Journal of Computational Physics, 21(3), 251-269. doi:10.1016/0021-9991(76)90023-1
22. Piton, V., Ouillon, S., Vinh, V. D., Many, G., Herrmann, M., & Marsaleix, P. (2020). Seasonal and tidal variability of the hydrology and suspended particulate matter in the Van Uc estuary, Red River, Vietnam. Journal of Marine Systems, 211. Retrieved from https://www.sciencedirect.com/science/article/abs/pii/S0924796320300993?via%3Dihub. doi:10.1016/j.jmarsys.2020.103403
23. Raymond, W. H., & Kuo, H. L. (1984). A radiation boundary condition for multi-dimensional flows. Quarterly Journal of the Royal Meteorological Society, 110(464), 535-551. doi:10.1002/qj.49711046414
24. Roelvink, J. A. (2006). Coastal morphodynamic evolution techniques. Coastal Engineering, 53(2-3), 277-287. doi:10.1016/j.coastaleng.2005.10.015
25. Shchepetkin, A. F., & McWilliams, J. C. (2005). The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9(4), 347-404. doi:10.1016/j.ocemod.2004.08.002
26. Song, Y., & Haidvogel, D. (1994). A Semi-implicit Ocean Circulation Model Using a Generalized Topography-Following Coordinate System. Journal of Computational Physics, 115(1), 228-244. doi:10.1006/jcph.1994.1189
27. Styles, R., & Glenn, S. M. (2000). Modeling stratified wave and current bottom boundary layers on the continental shelf. Journal of Geophysical Research: Oceans, 105(C10), 24119-24139. doi:10.1029/2000jc900115
28. Umlauf, L., & Burchard, H. (2003). A generic length-scale equation for geophysical turbulence models. Journal of Marine Research, 61(2), 235-265. doi:10.1357/002224003322005087
29. Warner, J. C. (2005). Numerical modeling of an estuary: A comprehensive skill assessment. Journal of Geophysical Research, 110(C5). doi:10.1029/2004jc002691
30. Warner, J. C., Defne, Z., Haas, K., & Arango, H. G. (2013). A wetting and drying scheme for ROMS. Computers & Geosciences, 58, 54-61. doi:10.1016/j.cageo.2013.05.004
31. Xie, X., Li, M., & Ni, W. (2018). Roles of Wind-Driven Currents and Surface Waves in Sediment Resuspension and Transport During a Tropical Storm. Journal of Geophysical Research: Oceans, 123(11), 8638-8654. doi:10.1029/2018jc014104
32. Yool, A., & Fasham, M. J. R. (2001). An Examination of the “Continental shelf pump” in an open ocean general circulation model. Global Biogeochemical Cycles, 15(4), 831-844. doi:10.1029/2000gb001359
33. 洪傳凱. (2020). 雲林海域水動力與輸砂之數值模擬. 國立成功大學, Available from Airiti AiritiLibrary database. (2020年)
34. 陳佑廷. (2011). 台灣海域一公里網格調和常數再探討. 國立臺灣海洋大學, Retrieved from https://hdl.handle.net/11296/9rsvh8 (2011年)
35. 黃郁琪. (2018). 雲林海域地形變遷之統計分析. 國立成功大學, Available from Airiti AiritiLibrary database. (2018年)
36. 黃煌煇, 陳陽益, 高瑞棋, 楊瑞源, & 吳念祖. (2016). 雲林離島式基礎工業區永續環境管理計畫-麥寮工業港南側人工養灘與相關課題評估分析. Retrieved from
37. 劉美君. (2007). 台灣海域高解析度網格之潮汐調和常數. 國立臺灣海洋大學, Retrieved from https://hdl.handle.net/11296/d73x69 (2007年)
校內:2026-07-28公開