簡易檢索 / 詳目顯示

研究生: 林渝晟
Lin, Yu-Cheng
論文名稱: 以台灣常見野草之重金屬濃度評估其環境修復潛力
Evaluation of Phytoremediator on heavy metals by common weeds in Taiwan
指導教授: 游鎮烽
You, Chen-Feng
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 97
中文關鍵詞: 植物修復重金屬生長表土生物濃縮係數轉移係數
外文關鍵詞: Heavy metal, Phytoremediation, Bioconcentration Factor, Transfer Factor
相關次數: 點閱:53下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 重金屬污染大多源自於人類活動所造成之工業廢棄物排放、農業活動及交通運輸等,對土壤、水源及生態系統造成嚴重的長期影響,這些污染物難以被進行降解,並且容易通過食物鏈積累進而威脅到人類的健康。現今對於環境中重金屬的修復行為,現有的整治方式包含化學、物理及生物修復,其中化學及物理修復之效用雖然有效,但成本往往過於高昂,且容易造成二次污染的風險,相對的生物修復在相較之下,植物修復技術利用植物吸收、轉移及穩定環境中之重金屬,具備環保、低成本及可持續性等優勢,是一種具有前瞻性的生態修復手段。
    本研究旨在探索具高潛力的植物修復劑,探討不同種植物對於重金屬污染土壤的修復效果及重金屬在植物體內的遷移狀況,本研究收集台灣常見的9種野草植物:金腰箭(Synedrella nodiflora)、斷節莎(Cyperus odoratus)、長葉腎蕨(Nephrolepis biserrata)、含羞草(Mimosa pudica)、五彩芋(Caladium bicolor)、野牡丹(Melastoma malabathricum)、藿香薊(Ageratum conyzoides)、黃金葛(Epipremnum aureum)、小葉海金沙(Lygodium microphyllum)及其生長的表土土壤,其中各植物再依據部位細分為根部、莖幹、葉片三部分進行取樣。以王水進行消化後,藉由四極矩感應耦合電漿質譜儀(ICP-QMS)分析樣品中環境潛在之重金屬含量,包含鉻、鎘、鎳、銅及鋅五種元素,並利用植物各器官與生長表土之元素濃度計算,以生物濃縮係數(Bioconcentration factor, BCF)大於1及轉移係數(Transfer factor, TF)小於1來評估植物進行環境修復與監測環境污染的潛力。
    BCF>1,表示該植物對目標元素有累積性,適合作為植物修復劑,經BCF分析,野牡丹(1.71)及藿香薊(1.05)在修復鎘污染中有卓越的表現;在修復鋅元素中,本研究之6種野草植物皆有良好的BCF,且表現優良者分別為長葉腎蕨(2.23)、含羞草(2.22)、五彩芋(2.49)、野牡丹(1.44)與霍香薊(2.61);銅元素的修復分析中得出金腰箭(1.95)、長葉腎蕨(1.35)與藿香薊(1.44)的優異表現,皆可作為植物修復劑潛力候選物種。
    TF>1的植物表示其莖葉能有效轉移根部之目標元素,在本研究中,斷節莎、藿香薊及五彩芋之莖葉組織對鎘、鋅、銅元素皆有良好的轉移係數,而莖葉在整個整治過程種是最容易凋落的組織,且在凋落過程中,容易讓累積在其中的重金屬重新回到土壤中,讓重金屬的修復效果減益,甚至造成重金屬污染之擴散,故整治效果將受限制,而這些研究結果提高了我們對於植物修復污染土壤機制之行為有著重要的參考價值。
    經BCF與TF之綜合評估,本研究中的9種野草對於鎳及鉻元素的修復成效不彰,而針對鎘、鋅及銅元素所得出修復表現卓越之物種,鎘污染可用野牡丹;鋅污染可用長葉腎蕨、含羞草及野牡丹;銅污染則可用金腰箭、長葉腎蕨及霍香薊作為植物修復劑。

    Heavy metal pollution, originating from industrial emissions, agricultural activities, and transportation, causes severe long-term impacts on soil, water sources, and ecosystems. These pollutants are resistant to degradation, bioaccumulate through the food chain, and pose significant health risks to humans. Although current remediation methods like chemical treatment and physical restoration are effective, they are costly and pose risks of secondary pollution. In contrast, phytoremediation leverages plants to absorb, transfer, and stabilize heavy metals, offering eco-friendly, cost-effective, and sustainable advantages, making it a promising ecological remediation technique. This study aims to explore high-potential phytoremediators and investigate the remediation efficiency of different plant species for heavy metal-contaminated soils and the translocation of heavy metals within plant tissues, to investigate the remediation effects of plant parts (roots, stems and leaves) on heavy metal contaminated soil. Nine species of wild weeds in Taiwan, namely, Synedrella nodiflora, Cyperus odoratus, Nephrolepis biserrata, Mimosa pudica, Caladium- bicolor, Melastoma malabathricum, Ageratum conyzoides, Epipremnum aureum, Lygodium- microphyllum, were collected. Roots, stems, leaves, and topsoil of each plant were digested with aqua regia, and analyzed for environment potential toxic heavy metals chromium, nickel, copper, zinc, and cadmium by Quadrupole Inductively-Coupled Plasma Mass Spectrometry (ICP-QMS). The Bioconcentration factor and Transfer factor were calculated using the elemental concentrations in each tissue and the growing topsoil of the plants to evaluate the potential of the plants for phytoremediation and monitoring of environmental pollution.

    摘要 Ⅱ 致謝 6 目錄 8 表目錄 11 圖目錄 12 1 第一章 緒論 14 1.1 研究動機與目的 14 1.2 研究流程與方法 17 2 第二章 文獻回顧 20 2.1 有毒重金屬 22 2.1.1 鉻(Chromium) 22 2.1.2 鎘(Cadmium) 23 2.1.3 鎳(Nickel) 24 2.1.4 鋅(Zinc) 25 2.1.5 銅(Copper) 26 2.2 植物修復 28 2.2.1 植物修復優、弱勢 28 2.2.2 植物修復的應用案例 29 2.3 土壤危害物質標準 31 3 第三章 研究設計與方法 32 3.1 樣品採集與前處理 32 3.1.1 植物樣品 43 3.1.2 土壤樣品 44 3.2 樣品消化 45 3.3 植物修復潛力評估指標 49 3.3.1 生物濃縮係數 50 3.3.2 轉移係數 50 3.4 實驗設備 51 4 第四章 實驗結果與討論 53 4.1 消化方法檢視與評估 54 4.2 植物組織與土壤元素濃度 55 4.2.1 鉻元素 55 4.2.2 鎘元素 56 4.2.3 鎳元素 58 4.2.4 鋅元素 59 4.2.5 銅元素 60 4.3 植物修復能力 61 4.3.1 鉻元素 62 4.3.2 鎘元素 64 4.3.3 鎳元素 66 4.3.4 鋅元素 69 4.3.5 銅元素 71 5 第五章 結論 74 5.1 結論 74 6 參考文獻 77 7 附錄 85 附錄 A野草俗名,學名、採樣日期與採樣位 85 附錄 B 生物濃縮係數 85 附錄 C 植物組織、生長表土元素濃度 87 附錄 D 轉移係數 92

    中文文獻
    台灣質譜學會,2015。質譜分析技術原理與應用。全華圖書,新北市,初版,共512頁。
    鍾全雄、黃國芳、王博賢、游鎮烽,2007。高精密無機質譜儀在地球科學及海洋科學研究上的應用。化學,中國化學會,65卷2期,113~124頁。
    外文文獻
    Aiyesanmi, A., Okoronkwo, A., and Sunday, O., 2012, Lead accumulation in Siam weed (Chromolaena odorata), Nodeweed (Synedrella nodiflora) and water leaf (Talinum triangulare): Potential phytoremediators: Arch Appl Sci Res, v. 4, no. 1, p. 360-371.
    Alloway, B. J., 2008, Zinc in soils and crop nutrition.
    Araya, M., Olivares, M., Pizarro, F., González, M., Speisky, H., and Uauy, R., 2003, Gastrointestinal symptoms and blood indicators of copper load in apparently healthy adults undergoing controlled copper exposure: The American journal of clinical nutrition, v. 77, no. 3, p. 646-650.
    Asztalos, B., Nemcsók, J., Benedeczky, I., Gabriel, R., Szabo, A., and Refaie, O., 1990, The effects of pesticides on some biochemical parameters of carp (Cyprinus carpio L.): Archives of environmental contamination and toxicology, v. 19, p. 275-282.
    Banas, A., Kwiatek, W., Banas, K., Gajda, M., Pawlicki, B., and Cichocki, T., 2010, Correlation of concentrations of selected trace elements with Gleason grade of prostate tissues: JBIC Journal of Biological Inorganic Chemistry, v. 15, p. 1147-1155.
    Basumatary, B., Saikia, R., Bordoloi, S., Das, H. C., and Sarma, H. P., 2012, Assessment of potential plant species for phytoremediation of hydrocarbon‐contaminated areas of upper Assam, India: Journal of Chemical Technology & Biotechnology, v. 87, no. 9, p. 1329-1334.
    Brewer, G. J., 2010, Risks of copper and iron toxicity during aging in humans: Chemical research in toxicology, v. 23, no. 2, p. 319-326.
    -, 2012, Copper excess, zinc deficiency, and cognition loss in Alzheimer's disease: Biofactors, v. 38, no. 2, p. 107-113.
    Carranza-Alvarez, C., Alonso-Castro, A. J., Alfaro-De La Torre, M. C., and García-De La Cruz, R. F., 2008, Accumulation and distribution of heavy metals in <i>Scirpus americanus</i> and <i>Typha latifolia</i> from an artificial lagoon in San Luis Potosi, Mexico: WATER AIR AND SOIL POLLUTION, v. 188, no. 1-4, p. 297-309.
    Chen, W.-M., Wu, C.-H., James, E. K., and Chang, J.-S., 2008, Metal biosorption capability of Cupriavidus taiwanensis and its effects on heavy metal removal by nodulated Mimosa pudica: Journal of Hazardous Materials, v. 151, no. 2-3, p. 364-371.
    Das, K., Das, S., and Dhundasi, S., 2008, Nickel, its adverse health effects & oxidative stress: Indian journal of medical research, v. 128, no. 4, p. 412-425.
    de Moya Sánchez, Á., CASIERRA, H., VARGAS, X., and Caselles-Osorio, A., 2021, Chromium and Zinc removal from synthetic industrial wastewater in pilot-scale constructed wetlands planted with Cyperus odoratus L: INGE CUC, v. 17, no. 2, p. 76-88.
    Denkhaus, E., and Salnikow, K., 2002, Nickel essentiality, toxicity, and carcinogenicity: Critical reviews in oncology/hematology, v. 42, no. 1, p. 35-56.
    Ernst, W., 1996, Bioavailability of heavy metals and decontamination of soils by plants: Applied geochemistry, v. 11, no. 1-2, p. 163-167.
    Manan, F.A., Mamat, D.D., Samad, A.A., Ong, Y.S., Ooh, K.F., and Chai, T.T., 2015, Heavy metal accumulation and antioxidant properties of Nephrolepis biserrata growing in heavy metal-contaminated soil, Global NEST Journal, Vol 17, No 3, pp 544-554
    Faris, N., Noriman, N., Haron, A., Sam, S., Hamzah, R., Shayfull, Z., and Ghazali, M., Mechanical and morphological study of linear low density polyethylene (LLDPE)/cyperus odoratus (CY) biocomposites, in Proceedings AIP Conference Proceedings2017, Volume 1885, AIP Publishing.
    Fernández, S., Poschenrieder, C., Marcenò, C., Gallego, J., Jiménez-Gámez, D., Bueno, A., and Afif, E., 2017, Phytoremediation capability of native plant species living on Pb-Zn and Hg-As mining wastes in the Cantabrian range, north of Spain: Journal of Geochemical Exploration, v. 174, p. 10-20.
    García-Mercado, H. D., Fernández-Villagómez, G., Garzón-Zúñiga, M. A., and Durán-Domínguez-de-Bazúa, M. d. C., 2019, Fate of mercury in a terrestrial biological lab process using Polypogon monspeliensis and Cyperus odoratus: International Journal of Phytoremediation, v. 21, no. 12, p. 1170-1178.
    Ghosh, M., and Singh, S., 2005, A review on phytoremediation of heavy metals and utilization of it’s by products: Asian J Energy Environ, v. 6, no. 4, p. 18.
    Guo, K., Yan, L., He, Y., Li, H., Lam, S. S., Peng, W., and Sonne, C., 2023, Phytoremediation as a potential technique for vehicle hazardous pollutants around highways: Environmental Pollution, v. 322, p. 121130.
    He, Z. L., Yang, X. E., and Stoffella, P. J., 2005, Trace elements in agroecosystems and impacts on the environment: Journal of Trace elements in Medicine and Biology, v. 19, no. 2-3, p. 125-140.
    Horsfall, M., Ogban, F. E., and Akporhonor, E. E., 2006, Recovery of lead and cadmium ions from metal-loaded biomass of wild cocoyam (Caladium bicolor) using acidic, basic and neutral eluent solutions: Electronic Journal of Biotechnology, v. 9, no. 2, p. 0-0.
    Horsfall, M., and Spiff, A. I., 2005, Effect of metal ion concentration on the biosorption of Pb2+ and Cd2+ by Caladium bicolor (wild cocoyam): African Journal of Biotechnology, v. 4, no. 2, p. 191-196.
    Huvinen, M., Uitti, J., Oksa, P., Palmroos, P., and Laippala, P., 2002, Respiratory health effects of long‐term exposure to different chromium species in stainless steel production: Occupational medicine, v. 52, no. 4, p. 203-212.
    Järup, L., Berglund, M., Elinder, C. G., Nordberg, G., and Vanter, M., 1998, Health effects of cadmium exposure–a review of the literature and a risk estimate: Scandinavian journal of work, environment & health, p. 1-51.
    Kasuya, M., 2000, Recent epidemiological studies on itai-itai disease as a chronic cadmium poisoning in Japan: Water science and technology, v. 42, no. 7-8, p. 147-154.
    Kotha, A. K., Nicholson, J. W., and Booth, S. E., 2023, Biological Evaluation of Zinc Phosphate Cement for Potential Bone Contact Applications: Biomedicines, v. 11, no. 2, p. 250.
    Lone, M. I., He, Z.-l., Stoffella, P. J., and Yang, X.-e., 2008, Phytoremediation of heavy metal polluted soils and water: progresses and perspectives: Journal of Zhejiang University Science B, v. 9, no. 3, p. 210-220.
    Madsen, E., and Gitlin, J. D., 2007, Copper and iron disorders of the brain: Annu. Rev. Neurosci., v. 30, p. 317-337.
    Akoto, O., Lawson, B. A., and Marfo, J. T., 2012, Potentials of Synedrella nodiflora and Sida fallax growing naturally around an abandoned railway station for phytoextraction of heavy metals.
    Ali, H., Khan, E., and Ilahi, I., 2019, Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation: Journal of chemistry, v. 2019, no. 1, p. 6730305.
    Ali, H., Khan, E., and Sajad, M. A., 2013, Phytoremediation of heavy metals—concepts and applications: Chemosphere, v. 91, no. 7, p. 869-881.
    Dhal, B., Thatoi, H., Das, N., and Pandey, B., 2013, Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review: Journal of hazardous materials, v. 250, p. 272-291.
    Fee, C. G., 2017, Pictorial guide to common weeds of plantations and their control.
    He, S., He, Z., Yang, X., Stoffella, P. J., and Baligar, V. C., 2015, Soil biogeochemistry, plant physiology, and phytoremediation of cadmium-contaminated soils: Advances in agronomy, v. 134, p. 135-225.
    Katz, S. A., and Salem, H., 1993, The toxicology of chromium with respect to its chemical speciation: a review: Journal of Applied Toxicology, v. 13, no. 3, p. 217-224.
    Kotaś, J., and Stasicka, Z., 2000, Chromium occurrence in the environment and methods of its speciation: Environmental pollution, v. 107, no. 3, p. 263-283.
    Kumar, M., Jaiswal, S., Sodhi, K. K., Shree, P., Singh, D. K., Agrawal, P. K., and Shukla, P., 2019, Antibiotics bioremediation: Perspectives on its ecotoxicity and resistance: Environment international, v. 124, p. 448-461.
    Mahajan, P., and Kaushal, J., 2018, Role of phytoremediation in reducing cadmium toxicity in soil and water: Journal of toxicology, v. 2018, no. 1, p. 4864365.
    Marques, A. P., Rangel, A. O., and Castro, P. M., 2009, Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology: Critical Reviews in Environmental Science and Technology, v. 39, no. 8, p. 622-654.
    Memon, A. R., AKTOPRAKLIGİL, D., ÖZDEMİR, A., and Vertii, A., 2001, Heavy metal accumulation and detoxification mechanisms in plants: Turkish Journal of Botany, v. 25, no. 3, p. 111-121.
    Naidu, V., 2012, Hand book on weed identification, Dr. VSGR Naidu.
    Nickens, K. P., Patierno, S. R., and Ceryak, S., 2010, Chromium genotoxicity: A double-edged sword: Chemico-biological interactions, v. 188, no. 2, p. 276-288.
    Obehi, T., 2020, Remediation of a heavy metal polluted soil using weedy species; Ageratum conyzoides L. and Chromolaena odorata (L.) RM King & H. Robinson: African Journal of Soil Science, v. 8, no. 5, p. 001-009.
    Pyšek, P., Jarošík, V., Hulme, P. E., Pergl, J., Hejda, M., Schaffner, U., and Vilà, M., 2012, A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species' traits and environment: Global change biology, v. 18, no. 5, p. 1725-1737.
    Sawada, A., and Oyabu, T., 2008, Purification characteristics of pothos for airborne chemicals in growing conditions and its evaluation: Atmospheric Environment, v. 42, no. 3, p. 594-602.
    Yao, Z., Li, J., Xie, H., and Yu, C., 2012, Review on remediation technologies of soil contaminated by heavy metals: Procedia Environmental Sciences, v. 16, p. 722-729.
    Zeng, P., Guo, Z., Cao, X., Xiao, X., Liu, Y., and Shi, L., 2018, Phytostabilization potential of ornamental plants grown in soil contaminated with cadmium: International journal of phytoremediation, v. 20, no. 4, p. 311-320.
    Zhang, X., Yang, M., Yang, H., Pian, R., Wang, J., and Wu, A.-M., 2024, The Uptake, Transfer, and Detoxification of Cadmium in Plants and Its Exogenous Effects: Cells, v. 13, no. 11, p. 907.
    Zheng, N., Wang, Q., and Zheng, D., 2007, Health risk of Hg, Pb, Cd, Zn, and Cu to the inhabitants around Huludao Zinc Plant in China via consumption of vegetables: Science of the total environment, v. 383, no. 1-3, p. 81-89.
    Mishra, T., and Pandey, V. C., 2019, Phytoremediation of red mud deposits through natural succession, Phytomanagement of polluted sites, Elsevier, p. 409-424.
    Mocek-Płóciniak, A., Mencel, J., Zakrzewski, W., and Roszkowski, S., 2023, Phytoremediation as an Effective Remedy for Removing Trace Elements from Ecosystems, Plants, Volume 12.
    Nishijo, M., Nakagawa, H., Suwazono, Y., Nogawa, K., and Kido, T., 2017, Causes of death in patients with Itai-itai disease suffering from severe chronic cadmium poisoning: a nested case–control analysis of a follow-up study in Japan: BMJ open, v. 7, no. 7, p. e015694.
    Pandey, V. C., 2012, Invasive species based efficient green technology for phytoremediation of fly ash deposits: Journal of Geochemical Exploration, v. 123, p. 13-18.
    Prasad, A. S., 1991, Discovery of human zinc deficiency and studies in an experimental human model: The American journal of clinical nutrition, v. 53, no. 2, p. 403-412.-, 2008, Zinc in human health: effect of zinc on immune cells: Molecular medicine, v. 14, p. 353-357.
    Ram, B. K., Han, Y., Yang, G., Ling, Q., and Dong, F., 2019, Effect of hexavalent chromium [Cr (VI)] on phytoremediation potential and biochemical response of hybrid Napier grass with and without EDTA application: Plants, v. 8, no. 11, p. 515.
    Satarug, S., Garrett, S. H., Sens, M. A., and Sens, D. A., 2011, Cadmium, environmental exposure, and health outcomes: Ciencia & saude coletiva, v. 16, no. 5, p. 2587-2602.
    Saud, S., Wang, D., Fahad, S., Javed, T., Jaremko, M., Abdelsalam, N. R., and Ghareeb, R. Y., 2022, The impact of chromium ion stress on plant growth, developmental physiology, and molecular regulation: Frontiers in Plant Science, v. 13, p. 994785.
    Shah, V., and Daverey, A., 2020, Phytoremediation: A multidisciplinary approach to clean up heavy metal contaminated soil: Environmental Technology & Innovation, v. 18, p. 100774.
    Sharma, P., and Pandey, S., 2014, Status of phytoremediation in world scenario: International Journal of Environmental Bioremediation & Biodegradation, v. 2, no. 4, p. 178-191.
    Sunderman Jr, F. W., 1984, Carcinogenicity of nickel compounds in animals: IARC scientific publications, no. 53, p. 127-142.
    Tan, H. W., Pang, Y. L., Lim, S., and Chong, W. C., 2023, A state-of-the-art of phytoremediation approach for sustainable management of heavy metals recovery: Environmental Technology & Innovation, v. 30, p. 103043.
    Turnlund, J. R., 1998, Human whole-body copper metabolism: The American journal of clinical nutrition, v. 67, no. 5, p. 960S-964S.
    Vengosh, A., 2010, Environmental Impacts of the Coal Ash Spill in Kingston, Tennessee: An 18-Month Survey.
    Waalkes, M. P., 2003, Cadmium carcinogenesis: Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, v. 533, no. 1-2, p. 107-120.
    Wan, X., Lei, M., and Chen, T., 2016, Cost–benefit calculation of phytoremediation technology for heavy-metal-contaminated soil: Science of the total environment, v. 563, p. 796-802.
    Wang, J., and Delavar, M. A., 2023, Techno-economic analysis of phytoremediation: A strategic rethinking: Science of The Total Environment, p. 165949.
    Yan, A., Wang, Y., Tan, S. N., Mohd Yusof, M. L., Ghosh, S., and Chen, Z., 2020, Phytoremediation: a promising approach for revegetation of heavy metal-polluted land: Frontiers in plant science, v. 11, p. 359.
    Zayed, A., Gowthaman, S., and Terry, N., 1998, Phytoaccumulation of trace elements by wetland plants: I. Duckweed: Wiley Online Library, 0047-2425.
    Zhang, G., Bai, J., Xiao, R., Zhao, Q., Jia, J., Cui, B., and Liu, X., 2017, Heavy metal fractions and ecological risk assessment in sediments from urban, rural and reclamation-affected rivers of the Pearl River Estuary, China: Chemosphere, v. 184, p. 278-288.
    Zhang, X., Zhou, W., Liu, H., Bai, E., Zhang, J., and Liu, Z., 2019, Dynamics of the remediating effects of plant litter on the biological and chemical properties of petroleum-contaminated soil: Environmental Science and Pollution Research, v. 26, p. 12765-12775.
    Zhu, G., Xiao, H., Guo, Q., Song, B., Zheng, G., Zhang, Z., Zhao, J., and Okoli, C. P., 2018a, Heavy metal contents and enrichment characteristics of dominant plants in wasteland of the downstream of a lead-zinc mining area in Guangxi, Southwest China: Ecotoxicology and Environmental safety, v. 151, p. 266-271.
    Zhu, G., Xiao, H., Guo, Q., Zhang, Z., Zhao, J., and Yang, D., 2018, Effects of cadmium stress on growth and amino acid metabolism in two Compositae plants: Ecotoxicology and Environmental Safety, v. 158, p. 300-308.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE