簡易檢索 / 詳目顯示

研究生: 陳志瑋
Chen, Chih-wei
論文名稱: 細料含量對乾粉質砂土動態行為影響之研究
The Effects of Fines Content on Dynamic Properties of Dry Silty Sand
指導教授: 倪勝火
Ni, Sheng-huoo
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 155
中文關鍵詞: 粉質砂土細料含量共振柱剪力模數阻尼比
外文關鍵詞: silty sand, fines content, resonant column test, shear modulus, damping ratio
相關次數: 點閱:115下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣地區在1999年集集地震時粉質砂土層發生大規模的液化現象,可以發現細料(通過200號篩之材料)影響著土壤的力學特性。本研究的目的是了解不同細料含量的乾砂,其動態性質的變化。研究方法為使用不同含量之無塑性細料乾員林砂利用共振柱試驗來求得其動態特性,研究設定不同的細料含量(乾淨砂、15%、30%、50%)、孔隙比(e = 0.7、e = 0.8、e = 1.0)在不同圍壓階段下來進行試驗。試驗的結果顯示,員林砂隨細料含量的增加,剪力模數會先下降後上升,而孔隙比越小,細料含量對剪力模數的影響越顯著;阻尼比的改變則不明顯。

    Liquefaction phenomenon had been observed in the silty sand layer in Taiwan Chi-Chi earthquake, 1999. It can be found that the fines material (the material passing through No. 200 sieve) impact on the mechanical behavior of dynamic soil properties. The purpose is to study the effects of the different fines content on dynamic properties of dry silty sand. Resonant column test was used to obtain the dynamic properties of non-plastic fine dry Yuanlin sand, by setting different of fines content (clean sand, 15%, 30%, 50%), void ratio (e = 0.7, e = 0.8, e = 1.0) at different stages of confining pressure. The results show that the shear modulus will firstly increase with fines content then decline. The smaller void ratio, the more significant of fines content on the shear modulus. However, the varying of damping ratio was not obvious.

    目錄 摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VIII 圖目錄 IX 符號說明 XIV 第一章 緒論 1 1.1 研究背景及動機 1 1.2 研究目的 2 1.3 研究方法 2 1.4 論文內容概述 3 第二章 文獻回顧 5 2.1 應變量的定義 5 2.2 土壤動力性質的量測方式 6 2.3 共振柱試驗 11 2.3.1 共振柱試驗之沿革 11 2.3.2 共振柱儀器之型式 13 2.4 影響土壤剪力模數的因素 18 2.4.1 剪應變振幅大小對剪力模數之影響 20 2.4.2 孔隙比(相對密度)對剪力模數的影響 24 2.4.3 平均有效圍壓對剪力模數的影響 26 2.4.4 細粒含量對剪力模數的影響 28 2.5 影響土壤阻尼比的因素 31 2.5.1 剪應變振幅大小對阻尼比之影響 32 2.5.2 孔隙比對阻尼比之影響 33 2.5.3 平均有效圍壓對阻尼比的影響 33 2.5.4 細料含量對阻尼比之影響 35 第三章 共振柱試驗原理 47 3.1 前言 47 3.2 共振柱波傳方程式理論 47 3.2.1 共振柱波傳理論的基本假設 48 3.2.2 水平扭轉共振柱之方程式 49 3.3 阻尼比的計算 50 3.3.1 自由振動衰減曲線法 50 3.3.2 半功率頻寬法 52 3.4 共振柱之剪應變計算 53 3.4.1 共振柱試驗之形狀函數 53 3.4.2 剪應變的量測 54 第四章 試驗土樣與方法 63 4.1 試驗土樣介紹 63 4.2 共振柱試驗(RCT) 64 4.3 試體製作程序 66 4.4 共振柱儀器安裝程序 68 第五章 試驗結果與分析 80 5.1 前言 80 5.2 剪力模數 81 5.2.1 有效圍壓對最大剪力模數的影響 81 5.2.2 孔隙比對最大剪力模數的影響 83 5.2.3 細粒含量對最大剪力模數的影響 84 5.2.4 剪應變振幅的影響 87 5.3 阻尼比 88 5.3.1 有效圍壓對最小阻尼比的影響 89 5.3.2 孔隙比對最小阻尼比的影響 89 5.3.3 細料含量對最小阻尼比的影響 89 5.3.4 剪應變改變的影響 90 第六章 結論與建議 115 6.1 結論 115 6.2 建議 116 參考文獻 118 附錄A 共振柱儀器之介紹 124 附錄B 研究之試驗結果 133 附錄C 共振柱波傳方程式推導 142 附錄D 阻尼比之公式推導 151 D.1 自由震盪衰減法 152 D.2 半功率頻寬法 153

    參考文獻
    1. 王金山,「共振柱試驗之土壤動力性質」,碩士論文,國立中央大學土木工程研究所,2004年。
    2. 何文傑,「砂土承受垂直振動變形之初步研究」,碩士論文,成功大學土木工程學系,2007年6月。
    3. 林靜怡,「細粒料對粉土細砂小應變勁度之影響」,碩士論文,國立交通大學土木工程學系,2003年6月。
    4. 林靜怡、何輔仁、黃安斌,「中小應變下之往復式應變控制三軸試驗」,地工技術雜誌,96 期,pp.17-26.,2003年。
    5. 倪勝火、常正之、蔡佩勳、張家榮,「高雄市區土壤動態特性之研究(二)」,國立成功大學土木工程研究所,行政院國家科學委員會防災科技研究報告80-60號,1992年。
    6. 孫家雯,「砂土細粒界定對液化強度之影響」,碩士論文,國立台灣大學土木工程系研究所,2001年。
    7. 徐瑞旻,「共振柱試驗程式視窗化之研究」,碩士論文,國立成功大學土木工程學系,2002年6月。
    8. 游家豪,「低塑性細料對粉質砂土動態性質之影響」,碩士論文,碩士論文,國立成功大學土木工程研究所,2007年8月。
    9. 黃安斌,「台灣中西部粉/砂土壤液化行為之研究心得」 地工技術雜誌,121 期,pp.5-16.,2009年。
    10. 黃信祥,「以現地冰凍土壤求得之剪力模數評估土壤之液化阻抗」,碩士論文,國立台灣科技大學營建工程系,2003年7月。
    11. 黃耀道,「台灣中西部粉土質砂土液化行為分析」,博士論文,國立交通大學土木工程系,2007年6月。
    12. 詹文源,「台南七股地區砂性土壤液化阻抗性質之評估」,碩士論文,成功大學土木工程學系,1996年。
    13. 廖元億,「台灣西南沿海高細粒料含量砂土的探討」,碩士論文,國立成功大學 土木工程研究所,2005年6月。
    14. 龔東慶、歐章煜,「土壤小應變三軸試驗之發展與應用」,地工技術雜誌,96 期,pp.5-16.,2003年。
    15. Anderson, D.G., “Dynamic Modulus of Cohesives Soils,” Thesis Presented to the University of Michigan, in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy, 311p. (1974).
    16. Atkinson, J.K. and Sallfors, G., “Experimental Determination of Soil Properties,” Proceedings of the 10th ECSMFE, Florence 3, pp. 915-956. (1991).
    17. Baig, S., Picornell, M. and Nazarian, S., “Low Strain Shear Moduli of Cemented Sand,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 123, No. 6, pp. 540-545. (1997).
    18. Barros, J.M.C., “Factors Affecting Dynamic Properties of Soil,” Ph.D. Thesis, University of Mechigan (1994).
    19. Hall, J.R., Jr. and Richart, F.E., Jr., “Dissipation of Elastic Wave Energy in Granular Soils,” J. Soil Mech. Found. Div. Proc., ASCE, Vol. 89, No. SM6, Nov., pp. 27-56. (1963).
    20. Hardin, B.O. and Drnevich, V. P., “Shear Modulus and Damping in Soils: Measurement and Parameter Effects,” J. Soil Mech. Found. Div., ASCE, Vol. 98, No. SM6, 1972, pp. 603-624. (1972a).
    21. Hardin, B.O. and Drnevich, V. P., “Shear Modulus and Damping in Soils: Design Equations and Curves,” J. Soil Mech. Found. Div., ASCE, Vol. 98, No. SM7, July, pp. 667-692. (1972b).
    22. Hardin, B.O. and Drnevich, V.P., “Shear Modulus and Damping in Soil:Measurement and Parameter Effects,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 98, No. SM6, June, pp. 603-624. (1972).
    23. Hardin, B.O. and Richart, F.E., Jr., “Elastic Wave Velocity in Granular Soils,” Journal of Soil Mechanic and Foundation Engineering Division, ASCE, Vol. 89, No. SM6, pp. 27-56. (1963).
    24. Hardin, B.O., “Dynamic Versus Static Shear Modulus for Dry Sand,” Materials Research and Standards, ASTM, Vol. 5, No. 5, May, pp. 232-235. (1965).
    25. Hardin, B.O., “The Nature of Damping in Stands,” J. Soil Mech. Found. Div., Proc., ASCE, Vol. 91, No. SM1, Jan., pp. 63-97. (1965).
    26. Hardin, B.O., “The Nature of Stress-Strain Behavior of Soils,” State-of-the-Art Report, Proc. ASCE Specialty Conference on Earthquake Engineering and Soil Dynamics, Pasadena, CA, Vol. 1, pp. 3-90. (1978).
    27. Hardin, B.O., and Drnevich, V.P., “Shear Modulus and Damping in Soil Measurement and Parameter Effects,” Journal of the Soil Mechanics and Foundations Div., ASCE, Vol. 98, No. SM6, June., pp. 603-624. (1972).
    28. Iwasaki, T. and Tatsuoka, F., “Effects of Grain Size and Grading on Dynamic Shear Moduli of Sands,” Soils and Foundations, JSSMFE, Vol. 17, No. 3, pp. 19-35. (1977).
    29. Iwasaki, T., Tasuoka, F. and Takagi, Y., “Shear Modulus of Sands under Cyclic Torsional Shear Loading,” Soil and Foundations, JSSMFE, Vol. 18, No. 1, pp. 39-56. (1978).
    30. Kayen, R.E., Mitchell, J.K., Seed, R.B., Lodge, A., Nishi, S. and Coutinho, R., “Evaluation of SPT-, CPT-, and Shear Wave–Based Methods for Liquefaction Potential Assessment Using Loma Prieta Data,” Proceedings, Fourth Japan-US Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures for Soil Liquefaction, Technical Report NCEER-92-0019, M. Hamada and T. D. O,Rourke, Eds., Vol. 1, pp. 177-204. (1992).
    31. Lade, P.V., and Yamamuro, J.A., “Effects of Non-Plastic Fines on Static Liquefaction of Sands,” Canadian Geotechnical Journal, Vol. 34, No. 6, pp. 918-928. (1997).
    32. Lee, C.J. and Sheu, S.F., “The Stiffness Degradation and Damping Ratio Evolution of Taipei Silty Clay under Cyclic Straining,” Soil Dynamics and Earthquake Engineering, Vol. 27, Issue 8, pp. 730-740, August( 2007).
    33. Lee, K.L. and Fitton, J.A., “Factors Affecting the Cyclic Loading Strength of Soil,” Vibration Effects of Earthquakes on Soils and Foundations, ASTM, STP 450, pp. 71- 95.(1969).
    34. Lee, K.L., and Seed, H.B., “Drained Strength Characteristics of Sands,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 93, No. SM6, pp. 117-141. (1967).
    35. Lin, S.Y., Lin, P.S., Luo, H.S., Juang, C.H., “Shear Modulus and Damping Ratio Characteristics of Gravelly Deposits,” Canadian Geotechnical Journal, Vol. 37, No. 3, Pro Quest Science Journals, pg. 638. Jun (2000).
    36. Mitchell, J. K. and Soga, K., Fundamentals of Soil Behavior, John Wiley & Sons, Inc.
    37. Naeini, S.A., Baziar, M.H., “ Effect of Fines Content on Steady-State Strength of Mixed and Layered Samples of a Sand,” Soil Dynamics and Earthquake Engineering, Vol. 24, Issue 3, pp. 181-187, April (2004).
    38. Polito, C.P., and Martin, Ⅱ, J.R., “Effects of Nonplastic Fines on the Liquefaction Resistance of Sands,” Journal of Geotechnical and Geoenvironmental engineering, pp. 408-415, May (2001).
    39. Saxena, S.K. and Reddy, K.R., “Dynamic Moduli and Damping Ration for Monterey No.0 Sand by Resonant Column Tests,” Soil and Foundations, JSSMFE, Vol. 29, No. 2, June, pp. 37-51. (1989).
    40. Seed, H.B. and Idriss, I.M., “Soil Moduli and damping factors for Dynamic response analyses,” Report No. EERC 70-10, Earthquake Engineering Research Center, University of California, (1970).
    41. Seed, H.B., Tokimatsu, K., and Harder, L.F., “The Influence of SPT Procedures in Evaluating Soil Liquefaction Resistance,” Report UCB/EERC-84-15, Earthquake Engineering Research Center, University of California, Berkeley, (1984).
    42. Seed, H.B., Wong, R.T., Idriss, I.M. and Tokimatsu, K., “Moduli and Damping Factor for Dynamic Analysis of Cohesionless Soils,” J. Geotechn. Eng. Div., ASCE, Vol. 112, No. 11, November, pp. 1016-1032. (1986).
    43. Tastsuoka, F., Iwasaki, T. and Takagi, Y., “Hysteretic Damping of Sands Under Cyclic Loading and Its Relation to Shear Moduli,” Soils and Foundations, JSSMFE, Vol. 18, No. 2, June, pp. 23-40. (1978).
    44. Thevanayagam, S., and Mardin, G. R., “Liquefaction in Silty Soils-Screening and Remediation Issues,” Soil Dynamics and Earthquake Engineering, Vol. 22, pp. 1035-1042. (2002)
    45. Thevanayagam, S., Fiorillo, M., and Liang, J., “Effect of Non- Plastic Fines on Undrained Cyclic Strength of Silty Sands,” Soil Dynamics and Liquefaction 2000, pp. 115-123. (2000).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE