簡易檢索 / 詳目顯示

研究生: 陳盈蓉
Chen, Ying-Jung
論文名稱: 樺木酸衍生物, SYK023, 的抗肺癌藥效之評估及其機轉之探討
To Study the Therapeutic Mechanism and Effect of Betulinic Acid Derivative, SYK023, in Lung Cancer
指導教授: 洪建中
Hung, Jan- Jong
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物資訊與訊息傳遞研究所
Insitute of Bioinformatics and Biosignal Transduction
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 78
中文關鍵詞: 樺木酸凋亡肺癌
外文關鍵詞: Betulinic acid, Lung cancer, Apoptosis
相關次數: 點閱:86下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肺癌在全球排名都是名列前茅,死亡率在2013年統計位居第一名,肺癌致死率高,主要原因是肺癌發現時已經是晚期,而且肺癌治癒率低。在治療癌症的過程當中,不管是放射線治療或是化療,對於病人副作用很大並且預後差,為了克服這樣的困難,出現許多報導探討天然藥物。樺木酸經由白樺木樹皮被萃取出來,擁有五環三帖的結構,在1995年被發現它可以有效的抑制腫瘤的生長,在細胞實驗或是活體試驗都有被證實,並且樺木酸具有選擇性毒殺,對於癌細胞的敏感度大於正常細胞。樺木酸抑制腫瘤的機轉主要是透過細胞凋亡的內在路徑,誘導粒線體內的細胞色素C的釋放,活化caspase-3導致細胞的死亡。先前我們實驗室在動物實驗當中證實了樺木酸可以抑制肺癌的生長,作用機轉是透過Sp1的降解,抑制腫瘤形成。在我的研究當中我們嘗試樺木酸的衍生物,想要找尋到對於肺癌細胞的毒殺功能更強,而副作用低的化合物。首先我們利用計數細胞的方式篩選這些樺木酸的衍生物,結果篩選出七個樺木酸衍生物對於肺癌細胞的毒殺效果比樺木酸好。從七種樺木酸衍生物當中挑選三個(SYK010, SYK019, SYK023)做後續的動物實驗,由異種移植的免疫缺陷鼠證實SYK023的效果是當中最好的,之後由我們實驗室所建立的Kras誘導肺癌的基因轉殖鼠,探討SYK023是否可以影響肺癌的形成,結果顯示SYK023的確可以抑制肺癌的形成。我們想要了解SYK023是否有其他的副作用,結果顯示出SYK023並不會影響到心臟、肝臟以及腎臟的功能。進一步我們探討SYK023是透過什麼樣的機轉來抑制腫瘤的生成,首先我們先用了流式細胞儀發現到SYK023會引起細胞凋亡,使用的濃度比樺木酸更低就會引起凋亡的現象,而之後我們證實SYK023引起的cleavage caspase-3 的濃度比樺木酸更低。我們經由細胞型態發現處理SYK023的細胞會有液泡產生,隨之我們開始探討SYK023是否會引起內質網壓力,由結果顯示出SYK023會比較早就引起內質網壓力,活化GADD153誘導細胞的凋亡。另一方面我們也發現到SYK023會使甲型微管蛋白減少,是透過泛素化的降解。

    Betulinic acid (BA) isolated from bark of white birch contains pentacyclic triterpenoid that exhibits potent anti-inflammatory, anti-malaria, anti-retroviral, and anti-tumor properties. BA could induce apoptosis by loss of mitochondrial potential, leading to cytochrome-c release, which in turn regulates the downstream caspase activation. Our recent study also show that BA could repress the cancer cells growth and reduce Sp1 protein stability. Herein we tried to increase the effect of BA in lung cancer therapy by modifying BA molecule. Therefore, more than thirty BA derivatives were used to evaluate their anti-cancer activity by cell number counting and MTT assays. Result indicated that several BA derivatives induced more cytotoxicity than BA itself in lung cancer cells. Subsequently, three more effective BA derivatives (SYK010, SYK019 and SYK023) were used for further study. At first, in these BA derivatives treated cells showed more Sub-G1 than BA treated cells, indicating these BA derivatives could induce more cell apoptosis than BA itself. Second, the effects of these BA derivatives were then evaluated in animal experiments including in Xenograph mice system and KrasG12D-induced lung cancer mice system. Results indicated that compound, SYK023, was more effective in preventing cancer formation than BA or SYK019 treatment. Finally, we found that BA and SYK023 treatments could induce ER stress, which might be related to the apoptosis. However, more direct evidence needs to be provided in the near future to support that SYK023 could induce an ER stress-mediated apoptosis, leading to the repression of cancer growth. Taken together, in this study, we found a novel BA derivative, SYK023, with more anti-cancer effect though inducing the ER stress-mediated apoptosis. The results showed the SYK023 increased Grp78 protein level more than BA, and it also increased the tubulin and total ubiquitination more than BA in lung cancer cells.

    中文摘要 I Abstract III 致謝 V 圖表目錄 IX 縮寫檢索表 XII 第一章 序論 1 第一節 肺癌(Lung cancer) 1 第二節 樺木酸(Betulinic acid) 2 第三節 細胞凋亡(Apoptosis) 3 第四節 內質網壓力(ER stress) 5 第五節 研究動機 7 第二章 實驗材料 8 第三章 實驗方法 12 第一節 細胞培養 12 第二節 細胞計數 13 第三節 MTT Assay 13 第四節 異種皮下移植(Xenograft mice)鼠 14 第五節 基因轉殖鼠(Transgenic mice) 15 第六節 乾式生化分析儀(FUJI DRI-CHEM 4000i) 18 第七節 Annexin V-FITC 細胞凋亡檢測 18 第八節 流式細胞儀 19 第九節 西方墨點技術(Western blot ) 20 第十節 株落形成實驗 (Colony formation/Soft agar assay) 24 第十一節 免疫沉澱 (Immunopreciptation,IP) 24 第十二節 Migration assay 26 第四章 實驗結果 27 第一節 7種樺木酸衍生物抑制H1299生長能力比樺木酸好 27 第二節 以異種移植(Xenogratf )肺癌細胞到免疫缺陷鼠中發現SYK023抑制肺癌細胞在活體生成最有效 27 第三節 SYK023有效抑制KrasG12D誘導的肺癌 29 第四節 SYK023並不會影響心、肝、腎的功能 29 第五節 SYK023會抑制H1299細胞的生長 31 第六節 SYK023誘導H1299產生細胞凋亡 32 第七節 SYK023誘導細胞凋亡透過內質網壓力 32 第八節 SYK023會抑制肺癌的轉移 33 第九節 SYK023會降解甲型微管蛋白 33 第十節 結論 34 第五章 實驗討論 35 第一節 SYK023是優於樺木酸新的化合物 35 第二節 內質網壓力對於細胞凋亡的影響 36 第三節 可能研究方向 36 第四節 新穎性 37 第六章 參考文獻 39 Fig.1. Several BA derivatives affect viability in lung cancer cells by cell count. 48 Fig.2. The guideline to evaluate effect of BA derivatives and compare with BA. 49 Fig.3. BA derivatives induced cytotoxic effect than BA. 51 Fig.4. Experimental procedure for establish the xenografted model. 52 Fig.5. BA and BA derivatives inhibited lung tumor growth in SDIC mice. 53 Fig.6. BA and BA derivatives inhibited lung tumor growth in SCID mice. 54 Fig.7 BA and BA derivatives inhibited lung tumor growth in SCID mice. 55 Fig.8. Experimental procedure for establish the transgenic mice model. 56 Fig.9 BA and SYK023 inhibited lung cancer formation.58 Fig,10. BA and SYK023 not induced side effect. 60 Fig.11. BA and SYK023 effect on cell proliferation in H1299. 61 Fig.12. SYK023 has low IC50 than BA in H1299. 62 Fig.13. SYK023 inhibited cell proliferation in 3D environment. 63 Fig.14. Effect of SYK023 on lung cancer cells apoptosis. 64 Fig15 SYK023 increased the population of sub-G1 on lung cancer cells. 66 Fig.16 SYK023 increased thecaspase-3, 9 on lung cancer cells. 67 Fig.17. SYK023 induced the cellular vacuolization in H1299. 68 Fig.18 SYK023 increased the Grp78 and GADD153 on lung cancer cells. 69 Fig.19 SYK023 increased phosphor-PERK on lung cancer cells. 70 Fig.20 SYK023 inhibit metastasis in SCID mice. 72 Fig.21 SYK023 decreased α-tubulin protein through ubiquitination. 73 Fig. 22 The working model of SYK023. 74 Tebal.1 The effect of several BA derivatives on viability in lung cancer cells. 75 Tebal.2 The number of injected the BA and BA derivatives in mice. 76 附錄一. The structure of Betulinic acid. 77 附錄二. The model of KrasG12D induced lung cancer formation. 78

    Bernales, S., Soto, M.M., and McCullagh, E. (2012). Unfolded protein stress in the endoplasmic reticulum and mitochondria: a role in neurodegeneration. Frontiers in aging neuroscience 4, 1-13.
    Beyer, I., Cao, H., Persson, J., Song, H., Richter, M., Feng, Q., Yumul, R., van Rensburg, R., Li, Z., Berenson, R., et al. (2012). Coadministration of epithelial junction opener JO-1 improves the efficacy and safety of chemotherapeutic drugs. Clinical cancer research 18, 3340-3351.
    Boyce, M., Bryant, K.F., Jousse, C., Long, K., Harding, H.P., Scheuner, D., Kaufman, R.J., Ma, D., Coen, D.M., Ron, D., et al. (2005). A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 307, 935-939.
    Chuang, J.Y., Wang, Y.T., Yeh, S.H., Liu, Y.W., Chang, W.C., and Hung, J.J. (2008). Phosphorylation by c-Jun NH2-terminal kinase 1 regulates the stability of transcription factor Sp1 during mitosis. Molecular biology of the cell 19, 1139-1151.
    Credle, J.J., Finer-Moore, J.S., Papa, F.R., Stroud, R.M., and Walter, P. (2005). On the mechanism of sensing unfolded protein in the endoplasmic reticulum. PNAS 102, 18773-18784.
    Feher, M., and Schmidt, J.M. (2003). Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry. Journal of chemical information and computer sciences 43, 218-227.
    Fulda, S., Jeremias, I., Steiner, H.H., Pietsch, T., and Debatin, K.M. (1999). Betulinic Acid: A New Cytotoxic Agent Against Malignant Brain-Tumor Cells. International Journal Of Cancer 82, 435–441.
    Fulda, S. (1998). Activation of Mitochondria and Release of Mitochondrial Apoptogenic Factors by Betulinic Acid. Journal of Biological Chemistry 273, 33942-33948.
    Fulda, S., and Debatin, K.M. (2006). Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25, 4798-4811.
    Fulda, S., Jeremias, I., and Debatin, K.M. (2004). Cooperation of betulinic acid and TRAIL to induce apoptosis in tumor cells. Oncogene 23, 7611-7620.
    Fulda, S., and Kroemer, G. (2009). Targeting mitochondrial apoptosis by betulinic acid in human cancers. Drug discovery today 14, 885-890.
    Gagandeep, S., Novikoft, P.M., Ott, M., and Gupta, S. (1999). Paclitaxel shows cytotoxic activity in human hepatocellular carcinoma cell. Cancer Letters 136, 109-118.
    Gilhus, N.E., Arli, J.A., and Thorsbyt, E. (1982). HLA Antigens In Epileptic Patients With Drug-Induced Immunodeficiency. International Journal of Immunopharmacology 4, 517-520.
    Guo, X., Ma, N., Wang, J., Song, J., Bu, X., Cheng, Y., Sun, K., Xiong, H., Jiang, G., Zhang, B., et al. (2008). Increased p38-MAPK is responsible for chemotherapy resistance in human gastric cancer cells. BioMed Central cancer 8, 375.
    Hayashi, T., Saito, A., Okuno, S., Ferrand-Drake, M., and Chan, P.H. (2003). Induction of GRP78 by ischemic preconditioning reduces endoplasmic reticulum stress and prevents delayed neuronal cell death. Journal of cerebral blood flow and metabolism 23, 949-961.
    Ho, M.M., Ng, A.V., Lam, S., and Hung, J.Y. (2007). Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer research 67, 4827-4833.
    Hollien, J., and Weissman, J.S. (2006). Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science 313, 104-107.
    Kleizen, B., and Braakman, I. (2004). Protein folding and quality control in the endoplasmic reticulum. Current opinion in cell biology 16, 343-349.
    Koehn, F.E., and Carter, G.T. (2005). The evolving role of natural products in drug discovery. Nature reviews Drug discovery 4, 206-220.
    Kozutsumi, Y., Segal, M., Normiagton, K., Gething, M.-J., and Sambrook, J. (1988). The presence of misfolded protein in the endoplasmic reticulum signals the induction of glucse-reglated protein. Letters tonature 332, 462-464.
    Lavrik, I.N., and Krammer, P.H. (2012). Regulation of CD95/Fas signaling at the DISC. Cell death and differentiation 19, 36-41.
    Levresse, V., Marek, L., Blumberg, D., and Heasley, L.E. (2002). Regulation of Platinum-Compound Cytotoxicity by the c-Jun N-Terminal Kinase and c-Jun Signaling Pathway in Small-Cell Lung Cancer Cells. Mol Pharmacol 62, 689–697.
    Li, F., Hayashi, T., Jin, G., Deguchi, K., Nagotani, S., Nagano, I., Shoji, M., Chan, P.H., and Abe, K. (2005). The protective effect of dantrolene on ischemic neuronal cell death is associated with reduced expression of endoplasmic reticulum stress markers. Brain research 1048, 59-68.
    Li, G., Mongillo, M., Chin, K.T., Harding, H., Ron, D., Marks, A.R., and Tabas, I. (2009). Role of ERO1-alpha-mediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stress-induced apoptosis. The Journal of cell biology 186, 783-792.
    Lin, Y.F., Lee, Y.F., and Liang, P.H. (2012). Targeting beta-tubulin:CCT-beta complexes incurs Hsp90- and VCP-related protein degradation and induces ER stress-associated apoptosis by triggering capacitative Ca(2+) entry, mitochondrial perturbation and caspase overactivation. Cell death and disease 3, e434.
    Liu, L., Wise, D.R., Diehl, J.A., and Simon, M.C. (2008). Hypoxic reactive oxygen species regulate the integrated stress response and cell survival. The Journal of biological chemistry 283, 31153-31162.
    Lu, P.D., Harding, H.P., and Ron, D. (2004). Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response. The Journal of cell biology 167, 27-33.
    McCullough, K.D., Martindale, J.L., Klotz, L.O., Aw, T.Y., and Holbrook, N.J. (2001). Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Molecular and cellular biology 21, 1249-1259.
    Meng, R.D., and El-Deiry, W.S. (2001). p53-independent upregulation of KILLER/DR5 TRAIL receptor expression by glucocorticoids and interferon-gamma. Experimental cell research 262, 154-169.
    Mi, L., Gan, N., Cheema, A., Dakshanamurthy, S., Wang, X., Yang, D.C., and Chung, F.L. (2009). Cancer preventive isothiocyanates induce selective degradation of cellular alpha- and beta-tubulins by proteasomes. The Journal of biological chemistry 284, 17039-17051.
    Moss, D.K., Betin, V.M., Malesinski, S.D., and Lane, J.D. (2006). A novel role for microtubules in apoptotic chromatin dynamics and cellular fragmentation. Journal of cell science 119, 2362-2374.
    Mullauer, F.B., Kessler, J.H., and Medema, J.P. (2009). Betulinic acid induces cytochrome c release and apoptosis in a Bax/Bak-independent, permeability transition pore dependent fashion. Apoptosis 14, 191-202.
    Pao, W., and Hutchinson, K.E. (2012). Chipping away at the lung cancer genome. Nature medicine 18, 349-351.
    Petronelli, A., Pannitteri, G., and Testa, U. (2009). Triterpenoids as new promising anticancer drugs. Anti-cancer drugs 20, 880-892.
    Pisha, E., and chal, H. (1995). Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis. Nature medicine 1, 1046-1051.
    Puthalakath, H., O'Reilly, L.A., Gunn, P., Lee, L., Kelly, P.N., Huntington, N.D., Hughes, P.D., Michalak, E.M., McKimm-Breschkin, J., Motoyama, N., et al. (2007). ER stress triggers apoptosis by activating BH3-only protein Bim. Cell 129, 1337-1349.
    Reyes-Zurita, F.J., Pachon-Pena, G., Lizarraga, D., Rufino-Palomares, E.E., Cascante, M., and Lupianez, J.A. (2011). The natural triterpene maslinic acid induces apoptosis in HT29 colon cancer cells by a JNK-p53-dependent mechanism. Biomed central cancer 11, 154.
    Ron, D., and Walter, P. (2007). Signal integration in the endoplasmic reticulum unfolded protein response. Nature reviews molecular cell biology 8, 519-529.
    Saelens, X., Festjens, N., Vande Walle, L., van Gurp, M., van Loo, G., and Vandenabeele, P. (2004). Toxic proteins released from mitochondria in cell death. Oncogene 23, 2861-2874.
    Schewe, D.M., and Aguirre-Ghiso, J.A. (2009). Inhibition of eIF2alpha dephosphorylation maximizes bortezomib efficiency and eliminates quiescent multiple myeloma cells surviving proteasome inhibitor therapy. Cancer research 69, 1545-1552.
    Siegel, R., Naishadham, D., and Jemal, A. (2013). Cancer statistics, 2013. A cancer journal for clinicians 63, 11-30.
    Simms-Waldrip, T., Rodriguez-Gonzalez, A., Lin, T., Ikeda, A.K., Fu, C., and Sakamoto, K.M. (2008). The aggresome pathway as a target for therapy in hematologic malignancies. Molecular genetics and metabolism 94, 283-286.
    Tait, S.W., and Green, D.R. (2010). Mitochondria and cell death: outer membrane permeabilization and beyond. Nature reviews Molecular cell biology 11, 621-632.
    Tan, Y., Rong Yu, and Pezzuto, J.M. (2002). Melanoma Cells Involves Mitogen-activated Protein Kinase Betulinic Acid-induced Programmed Cell Death in Human Activation. Clinical cancer research : an official journal of the American Association for Cancer Research 9, 2866-2875.
    van der Meer, F.J., Faber, D.J., Aalders, M.C., Poot, A.A., Vermes, I., and van Leeuwen, T.G. (2010). Apoptosis- and necrosis-induced changes in light attenuation measured by optical coherence tomography. Lasers in medical science 25, 259-267.
    Wang, C., and Youle, R.J. (2009). The role of mitochondria in apoptosis*. Annual review of genetics 43, 95-118.
    Wang, X. (2001). The expanding role of mitochondria in apoptosis. Genes and development 15, 2922-2933.
    Wen, C.C., Kuo, Y.H., Jan, J.T., Liang, P.H., Wang, S.Y., Liu, H.G., Lee, C.K., Chang, S.T., Kuo, C.J., Lee, S.S., et al. (2007). Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. Journal of medicinal chemistry 50, 4087-4095.
    Yamamoto, K., Ichijo, H., and Korsmeyer, S.J. (1999). Pathway Normally Activated at G2/M an ASK1/Jun N-Terminal Protein Kinase BCL-2 Is Phosphorylated and Inactivated by. Molecular and cellular biology 19, 8469-8478.
    Yoshida, H., Matsui, T., Akira Yamamoto, Okada, T., and Mori1, K. XBP1 mRNA Is Induced by ATF6 and Spliced by IRE1 in Response to ER Stress to Produce a Highly Active Transcription Factor. Cell 107, 881-891.
    Yun, Y., Han, S., Park, E., Yim, D., Lee, S., Lee, C.K., Cho, K., and Kim, K. (2003). Immunomodulatory activity of betulinic acid by producing pro-inflammatory cytokines and activation of macrophages. Archives of pharmacal research 26, 1087-1095.
    Zhou, J., Liu, C.Y., Back, S.H., Clark, R.L., Peisach, D., Xu, Z., and Kaufman, R.J. (2006). The crystal structure of human IRE1 luminal domain reveals a conserved dimerization interface required for activation of the unfolded protein response. Proceedings of the national academy of sciences 103, 14343-14348.
    Zuco, V., Supino, R., Righetti, S.C., Cleris, L., Marchesi, E., Gambacorti-Passerini, C., and Formelli, F. (2002). Selective cytotoxicity of betulinic acid on tumor cell lines, but not on normal cells. Cancer letters 175, 17–25.

    下載圖示 校內:2015-08-06公開
    校外:2015-08-06公開
    QR CODE