| 研究生: |
謝嘉宏 Hsieh, Chia-hong |
|---|---|
| 論文名稱: |
利用液相氧化法在砷化銦與砷化銦鋁研製本質氧化層及其應用 InAs and InAlAs Native Oxides Prepared by Liquid Phase Oxidation Method and Their Applications |
| 指導教授: |
王永和
Wang, Yeong-her |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 液相氧化法 、砷化銦鋁 、砷化銦 |
| 外文關鍵詞: | liquid phase oxidation, InAlAs, InAs |
| 相關次數: | 點閱:89 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本文中,我們致力研究液相氧化法分別於砷化銦(InAs)與砷化銦鋁(InAlAs)這兩種不同的材料上的特性表現。比較於其他氧化系統,液相氧化法系統不需外加其他能量輔助,只要將晶片所浸入調配好的成長液而其溫度調節保持在30~70oC環境下便能成長均勻氧化薄膜。
在砷化銦的氧化方面,發現在初pH值為4.3 (50oC) 時有較高的氧化速率,再針對其高溫熱處理前後物性與化性之研究。物性方面,熱處理前後,氧化薄膜厚度的差可由橢圓測厚儀得到。此外,使用掃描式電子顯微鏡(SEM)與原子力顯微鏡(AFM)去分析高溫處理後的氧化薄膜粗糙度,我們發現在氮氣環境下進行高溫熱處理後,氧化層薄膜擁有較小的粗糙度;然而,在相同環境700oC的高溫處理會造成氧化層的破壞,使得粗糙度變大。化性部分,透過X光-光譜儀(XPS)來分析該氧化薄膜之化學組成,經過不同溫度的熱處理後,發現氧化層薄膜中的砷訊號減弱或消失而氧化砷的訊號增強了;另一方面,氧化銦有向高束縛能偏移的現象發生。
在砷化銦鋁的氧化方面主要為應用液相氧化法於砷化銦鋁/砷化銦鎵高速電子移動率電晶體形成金氧半高速電子移動率結構的元件特性上,和傳統高速電子移動率電晶體比較下,由於閘極介電層有較大的電位障,因此可以克服通道中撞擊游離現象,改善紐結效應;同時可獲得較佳的飽和特性與功率特性等優點;在操作頻率為2.4 GHz 時,傳統高速電子移動率電晶體可獲得小訊號功率增益為21.05 dB,飽和輸出功率為12.46 dBm,最大功率附加效率為23 %;金氧半高速電子移動率電晶體可獲得小訊號功率增益為18.66 dB,飽和輸出功率為14.32 dBm,最大功率附加效率為34 %。
This paper demonstrates the use of a simple, low cost, and low temperature (30~70oC) liquid-phase oxidation (LPO) technique to prepare native oxide films on InAs and InAlAs, as well as their applications to gate dielectrics. The purpose of this study is to characterize the oxide films with a thermal annealing treatment under an atmosphere of high purity nitrogen.
In InAs, we found the higher oxidation rate at initial pH value is 4.3 (temperature is 50oC). In physical considerations, variations of oxide thickness of the oxide films after annealing were investigated through an ellipsometer. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to analyze the surfaces of oxide films after annealing, after which we found that the lower roughness of the oxide films can be achieved. However, we also found that annealing the destroyed oxide films at 700 oC resulted in increased roughness of such oxide films. In chemical considerations, X-ray photoelectron spectroscopy (XPS) was used for chemical analysis of oxide composition films. After annealing at different temperatures, the peak of As bounded in InAs, was either reduced or became subject to disappearance as the peak of As2O3 is increased. By the way, the peak of In2O3 shifts toward higher binding energy can be observed after annealing.
Another purpose of this study is to characterize the InAlAs/InGaAs metamorphic HEMTs with liquid phase oxidized InAlAs as gate insulators. Compared to the conventional MHEMT, the impact ionization of the channel can be overcome by a thin liquid phase oxidized film as gate insulator. The potential of the lager barrier improved the kink effects. Consequently, large gate voltage and improved power performance were obtained. For the conventional MHEMTs, the measured small-signal power gain, saturated output power, and maximum power-added-efficiency at 2.4 GHz were 21.05 dB, 12.46 dBm and 23 %, respectively. For the MOS-MHEMTs with a gate oxide thickness of 6.3 nm, the measured small-signal power gain, saturated output power, and maximum power-added-efficiency at 2.4 GHz were 18.66 dB, 14.32 dBm and 34 %, respectively.
[1] H. H. Wang, C. J. Huang, Y. H. Wang, and M. P. Houng, “Liquid phase chemical-enhanced oxidation for GaAs operated near room temperature,” Jpn. J. Appl. Phys., vol. 37, pp. L67-L70, 1998.
[2] H. H. Wang, Y. H. Wang, and M. P. Houng, “Near room temperature selective oxidation on GaAs using photoresist as a mesk,” Jpn. J. Appl. Phys., vol. 37, pp. L988-L990, 1998.
[3] H. H. Wang, J. Y. Wu, Y. H. Wang, and M. P. Houng, “Effect of pH values on the kinetics of liquid phase chemical enhanced oxidation of GaAs,” J. Electrochem. Soc., vol. 146, pp. 2328-2332, 1999.
[4] J. Y. Wu, H. H. Wang, Y. H. Wang, and M. P. Houng, “A GaAs MOSFET’s fabrication with a liquid phase oxidized gate,” IEEE Trans. Electron Dev., vol. 20, pp. 18-20, 1999.
[5] J. Y. Wu, H. H. Wang, Y. H. Wang, and M. P. Houng, “ GaAs MOSFET’s fabrication with a liquid phase oxidized gate,” IEEE Trans. Electron Dev., vol. 48, pp. 634-637, 2001.
[6] K. W. Lee, P. W. Sze, Y. H. Wang, and M. P. Houng, “Liquid phase chemical enhanced oxidation on AlGaAs and its application,” Jpn. J. Appl. Phys., vol. 43, pp. 4087-4091, 2004.
[7] K. W. Lee, P. W. Sze, Y. H. Wang, and M. P. Houng, “AlGaAs/InGaAs metal-oxide–semiconductor pseudomorphic high-electron- mobility transistor with liquid phase oxidized AlGaAs as gate dielectric,” Solid-State Electron., vol. 49, pp. 213-217, 2005.
[8] K. W. Lee, P. W. Sze, M. P. Houng, and Y. H. Wang, “Characterization of the In GaAs oxide prepared by liquid phase oxidation,” in Proceedings of International Electron Devices and Materials Symposia (IEDMS), Hsnchu, Taiwan, pp. 435-437, 2004.
[9] K. W. Lee, N. Y. Yang, M. P. Houng, Y. H. Wang, and P. W. Sze, “Improved breakdown voltage and impact ionization in InAlAs/InGaAs metamorphic high-electron-mobility transistor with a liquid phase oxidized InGaAs gate,” Appl. Phys. Lett., vol. 87, pp. 263501-1-263501-3, 2005.
[10] K. W. Lee, Y. J. Lin, N. Y. Yang, Y. C. Lee, P. W. Sze, Y. H. Wang, and M. P. Houng, “InGaP/InGaAs/GaAs metal-oxide-semiconductor pseudomorphic high electron mobility transistor with a liquid phase oxidized InGaP gate,” ICSICT, Beijing, China, pp. 2301-2304, 2004.
[11] W. Kruppa and J. B. Boos, “Examination of the kink effect in InAlAs/InGaAs/InP HEMT’s using sinusoidal and transient excitation,” IEEE Trans. Electron Dev., vol. 42, pp. 1717-1723, 1995.
[12] S. K. Ghandhi, VLSIFabrication Principles: Silicon and Gallium Arsenide, NEW York: John Wiley & Sons, Inc., 1994.
[13] D. J. Coleman, D. W. Shaw, and R. D. Dobrott, “On the mechanism of GaAs anodization,” J. Electrochem. Soc., vol.124, pp. 239-241, 1977.
[14] M. Tong, K. Nummila, A. Ketterson, I. Adesida, C. Caneau, and R. Bhat, “InAlAs/InGaAs/InP MODFET’s with uniform threshold voltage obtained by selective wet gate recess,” IEEE Electron Device Lett., vol. 13, no. 10, pp. 525-527, 1992.
[15] K. L. Lee, “InAlAs/InGaAs metamorphic high electron mobility transistors with a liquid phase oxidized InAlAs as gate insulator,” thesis of master, Institute of Microelectronics, Dep. E.E. NCKU, Taiwan, Republic of China, pp. 9-10, 2006.
[16] H. H. Wieder, “A review of the electrical and optical properties of III–V compound semiconductor films.” J. Vac. Sci. Technol., vol. 8, no. 1, pp. 210-223, 1971.
[17] Hung-Der Su, Shou-Zen Chang, Si-Chen Lee, and Tai-Ping Sun, “High temperature InAs infrared detector based on metal-insulator-semiconductor structure.” IEE Electron. Lett., vol. 31, no.11, pp. 918-920, 1995.
[18] L. O. Bubulac, A. M. Andrews, E. R. Gertner, and D. T. Cheung, “Backside-illuminated InAsSb/GaSb broadband detectors.” Appl. Phys. Lett., vol.36, pp. 734-736, 1980.
[19] C. H. Grein, “Long wavelength InAs/InGaSb infrared detectors: Optimization of carrier lifetimes.” J. Appl. Phys., vol. 78, no. 12, pp. 7143-7152, 1995.
[20] Y. Zhao, M. J. Jurkovic, and W. I. Wang, “Characterization of AuGe- and AuTe-based ohmic contacts on InAs n-channel high electron mobility transistors.” J. Electrochem. Soc., vol. 144, no. 3, pp. 1067-1069, 1997.
[21] Ilan Bloom and Yael Nemirovsky, “Surface passivation of backside-illuminated indium antimonide focal plane array.” IEEE Trans. Electron Dev., vol. 40, no. 2, pp. 309-314, 1993.
[22] Yu. A. Kudryavtsev, E. B. Novikov, N. M. Stus’, and E. I. Chaikina, “Sulfide passivation of InAs surface.” Sov. Phys. Semicond., vol. 26, no. 10, pp. 975-978, 1992.
[23] Mitsuhiro Katayama, Masakazu Aono, Haruhiro Oigawa, Yasuo Nannichi, Hirohiko Sugahara, and Masaharu Oshima, “Surface structure of InAs (001) treated with (NH4)2Sx solution.” Jpn. J. Appl. Phys., vol. 30, no. 5A, pp. L786-L789, 1991.
[24] G. Eftekhari, “The effect of sulfur passivation and rapid thermal annealing on the properties of InAs MOS structures with the oxide layer deposited by reactive sputtering.” Phys. Stat. Sol. (a), vol. 161, no. 2, pp. 571-576, 1997.
[25] C. W. Wilmsen, “Chemical composition and formation of thermal and anodic oxide/III-V compound semiconductor interfaces,” J. Vac. Sci. Technol., vol. 19, no. 3, pp. 279-289, 1981.
[26] L. L. Kazmerski, P. J. Ireland, and P. Sheldon, “Comparison of low-temperature oxides on polycrystalline InP by AES, SIMS, and XPS.” J. Vac. Sci. Technol., vol. 17, pp. 1061-1066, 1980.
[27] W. Schockley, “Circuit elements utilizing semiconductive material,” U.S. Patent, N. 2569, pp. 347-348, 1951.
[28] T. Mimura, S. Hiyamizu, T. Fujii, and K. Nanbu, “A new field-effect transistor with selectively doped GaAs/n-AlxGa1-xAs heterojunctions”, Jpn. J. Appl. Phys., vol. 19, no. 5, pp. L225-L227, 1980.
[29] L. D. Nguyen, W. J. Schaff, P. J. Tasker, A. N. Lepore, L. F. Palmateer, M. C. Foisy, and L. F. Eastman, “Charge control, DC, and RF performance of a 0.35 μm pseudomorphic AlGaAs/InGaAs modulation-doped field-effect transistor,” IEEE Trans. Electron Dev., vol. 35, pp. 139-144, 1988.
[30] Y. Ando and T. Itoh, “Accurate modeling for parasitic source resistance in two-dimensional electron gas field-effect transistors,” IEEE Trans. Electron Dev., vol. 36, pp. 1036-1044, 1989.
[31] S. Karmalkar and G. Ramesh, “A simple yet comprehensive unified physical model of the 2D electron gas in delta-doped and uniformly doped high electron mobility transistors,” IEEE Trans. Electron Dev., vol. 47, pp. 308-312, 2000.
[32] S. I. Gozu, K. Tsuboki, M. Hayashi, C. Hong, and S. Yamada, “Very high electron mobilities at low temperatures in InxGa1-xAs/InyAl1-yAs HEMTs grown lattice-mismatched on a GaAs substrates,” J. Cryst. Growth, vol. 201202, pp. 749-752, 1999.
[33] S. Bollaert, Y. Corider, M. Zaknoune, T. Parenty, H. Happy, S. Lepilliet, and A. Cappy, “fmax of 490 GHz metamorphic In0.52Al0.48As/In0.53Ga0.47As HEMTs on GaAs substrate,” IEE Electron. Lett., vol. 38, no. 8, pp. 389-391, 2002.
[34] M. Zaknoune, B. Bonte, C. Gaquiere, Y. Corider, Y. Druelle, D. Théron, and Y. Crosnier, “InAlAs/InGaAs metamorphic HEMT with high current density and high breakdown voltage,” IEEE Electron Device Lett., vol. 19, pp. 345-347, 1999.
[35] D. W. Tu, S. Wang. J. S. M. Liu, K. C. Hwang, W. Kong, P. C. Chao, and K. Nichols, "High-performance double-recessed InAlAs/InGaAs power metamorphic HEMT on GaAs substrate,” IEEE Microwave Guide. Wave Lett., vol. 9, pp. 458-460, 1999.
[36] K. C. Hwang, P. C. Chao, C. Creamer, K. B. Nichols, S. Wang, D. Tu, W. Kong, D. Dugas, and G. Patton, “Very high gain millimeter-wave InAlAs/InGaAs/GaAs metamorphic HEMT’s,” IEEE Electron Device Lett., vol. 20, pp. 551-553, 1999.
[37] A. Cappy, B. Carnez, R. Fauquembergues, G. Salmer, and E. Constant, “Comparative potential performance of Si, GaAs, GaInAs, InAs submicrometer-gate FET’s,” IEEE Trans. Electron Dev., vol. 27, pp. 2158-2160, 1980.
[38] F. Schwierz and J. J. Liou, Modern microwave transistors, New Jersey: John Wiley & Sons, Inc., 2003.
[39] K. W. Lee, K. L. Lee, X. Z. Lin, C. H. Tu, and Y. H. Wang, “Improvement of impact ionization effect and subthreshold current in InAlAs/InGaAs metal–oxide–semiconductor metamorphic HEMT with a liquid-phase oxidized InAlAs as gate insulator.” IEEE Trans. Electron Dev., vol. 54, no. 3, pp. 418-424, 2007.
[40] K. W. Lee, K. L. Lee, H. C. Lin, C. H. Tu, C. C. Hu, and Y. H. Wang, “Near-room-temperature selective oxidation on InAlAs and application to In0.52Al0.48As/In0.53Ga0.47As metamorphic HEMTs, ” J. Electrochem. Soc., vol. 154, no. 11, pp. H957-H961, 2007.
[41] K. L. Lee, K. W. Lee, M. H. Tsai, P. W. Sze, M. P. Houng, and Y. H. Wang, “InAlAs/InGaAs metamorphic high electron mobility transistor with a liquid phase oxidized InAlAs as gate dielectric,” in IEEE Conf. on Electron Devices and Solid-State Circuits (EDSSC), Hong Kong, China, 19-21, pp. 613-616, Dec. 2005.
[42] S. R. Bahl and J. A. del Alamo, “Elimination of mesa-sidewall gate leakage in InAlAs/InGaAs heterostructures by selective sidewall recessing,” IEEE Electron Device Lett., vol. 13, pp. 195-197, 1992.
[43] N. C. Paul, K. Nakamura, H. Seto, K. Iiyama, and S. Takamiya, “Oxidation of InAlAs and its application to gate insulator of InAlAs/InGaAs metal oxide semiconductor high electron mobility transistor,” Jpn. J. Appl. Phys., vol. 44, pp. 1174-1180, 2005.
[44] M. Boudrissa, E. Delos, Y. Cordier, D. Théron, and J. C. De Jaeger, “Enhancement mode metamorphic Al0.67In0.33As/Ga0.66In0.34As HEMT on GaAs substrate with high breakdown voltage,” IEEE Electron Device Lett., vol. 21, pp. 512-514, 2000.
[45] J. P. Ao, Q. M. Zeng, Y. L. Zhao, X. J. Li, W. J. Liu, S. Y. Liu, S. Y. Liu, and C. G. Liang, “InP-based enhancement-mode pseudomorphic HEMT with strained In0.45Al0.55As barrier and In0.75Ga0.25As channel layers,” IEEE Electron Device Lett., vol. 21, pp. 200-202, 2000.
[46] K. J. Chen, T. Enoki, K. Maezawa, and K. Arai, “High-performance InP-based enhancement-mode HEMT’s using non-alloyed ohmic contacts and Pt-based buried-gate technologies,” IEEE. Trans. Electron Dev., vol. 43, pp. 252-257, 1996.
[47] N. Wichmann, I. Duszynski, X. Wallart, S. Bollaert, and A. Cappy, “InAlAs/InGaAs double gate HEMTs on transferred substrate,” IEEE Electron Device Lett., vol. 25, pp. 354-356, 2004.