簡易檢索 / 詳目顯示

研究生: 呂珮榕
Lu, Pei-Rong
論文名稱: 平面型導光板太陽能集光器於薄型太陽能雷射應用之探討
Discussion on the application of planar lightguide solar concentrator in thin solar laser system
指導教授: 朱淑君
Chu, Shu-Chun
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 71
中文關鍵詞: 平面型導光板太陽能集光器太陽能雷射
外文關鍵詞: planar lightguide, solar concentrator, solar laser
相關次數: 點閱:38下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的研究目的是透過模擬並驗證一個使用平面型導光板作為太陽能集光器的新型太陽能雷射系統。本研究利用LightTools軟體建構一個平面型導光板太陽能集光器,透鏡陣列中的每個透鏡皆對應到一個在導光板底部的空氣凹槽微結構,透過內全反射的特性將光線引導收集並入射雷射增益晶體,再透過LASCAD軟體的優化與驗證雷射系統的特性。研究結果發現在太陽光垂直入射集光器的模型上,光學效率可以由其他研究的81.9%提升至我們模型的87.33%;而在太陽光斜向入射集光器的模型上,光學效率可以由其他研究的64%提升至我們模型的93.45%。在太陽能雷射的部分也成功透過平面型導光板太陽能集光器建構出新型且相對輕薄的太陽能雷射系統,雷射系統的斜率效率可以由其他研究的2.3%提升至我們模型的10.06%。

    The purpose of this research is to simulate and verify a new solar laser system using a planar lightguide as a solar collector. This study uses LightTools software to construct a planar lightguide solar collector. Each lens in the lens array corresponds to an air dimple microstructure at the bottom of the planar lightguide, which guides the collected light into the gain medium through the characteristic of total internal reflection. Optimize and verify the characteristics of the laser system by LASCAD software. The results of the study found that the design of the concentrator has a good performance compared with other studies. In the part of the solar laser system, it has also been successfully verified that the laser can reach the light-emitting condition through this new and relatively thin planar lightguide light-collecting system.

    摘要 Ⅰ 英文延伸摘要(Extended Abstract) Ⅱ 致謝 Ⅵ 目錄 Ⅶ 圖目錄 Ⅸ 第一章 緒論 1 第二章 基礎光學原理與模擬軟體介紹 3 2.1 反射與折射 3 2.2 Fresnel equations與內全反射 7 2.3 雷射原理 9 2.4 模擬軟體介紹 12 2.4.1 LightTools軟體 12 2.4.2 LASCAD軟體 14 第三章 平面型導光板太陽能集光器與太陽能雷射設計 16 3.1 太陽能集光器 16 3.1.1 太陽能集光器設計考量參數 20 3.1.2 太陽能集光器設計模型 22 3.2 太陽能雷射 28 3.2.1 太陽能雷射設計考量參數 30 3.2.2 太陽能雷射設計模型 31 第四章 模擬結果與討論 35 4.1 模擬驗證與討論 35 4.1.1 太陽光垂直入射 36 4.1.2 太陽光斜向入射 38 4.1.3 雷射共振腔設計及模擬 43 4.1.4 模組化的太陽能雷射系統模擬 53 4.2 與同類型設計之比較 63 第五章 結論與未來展望 67 5.1 結論 67 5.2 未來展望 68 參考文獻 69

    1 Z. Guan, C. M. Zhao, S. H. Yang, Y. Wang, J. Y. Ke, and H. Y. Zhang, "Demonstration of a free-space optical communication system using a solar-pumped laser as signal transmitter," Laser Phys. Lett. 14,5, 055804 (2017).
    2 T.-C. Teng, C.-H. Kuo, and Y.-J. Li, "Planar solar concentrator composed of stacked waveguides with arc-segment structures and movable receiving assemblies," Opt. Express 28,23, 34362-34377 (2020).
    3 O. Selimoglu, and R. Turan, "Exploration of the horizontally staggered light guides for high concentration CPV applications," Opt. Express 20,17, 19137-19147 (2012).
    4 H.-Y. Wu, and S.-C. Chu, "Ray-leakage-free sawtooth-shaped planar lightguide solar concentrators," Opt. Express 21,17, 20073-20089 (2013).
    5 P. Benitez, A. Cvetkovic, R. Winston, G. Diaz, L. Reed, J. Cisneros, A. Tovar, A. Ritschel, and J. Wright, "High-Concentration Mirror-Based Kohler Integrating System for Tandem Solar Cells," in 2006 IEEE 4th World Conference on Photovoltaic Energy Conference(2006), pp. 690-693.
    6 B. D. Tibúrcio, D. Liang, J. Almeida, D. Garcia, and C. R. Vistas, "Dual-rod pumping concept for TEM00-mode solar lasers," Appl. Opt. 58,13, 3438-3446 (2019).
    7 A. Minaeian, A. Alemrajabi, M. Chavoshi, A. Mostafaeipour, and Z. Seifi, "Effect of secondary reflector on solar flux intensity and uniformity of a Fresnel concentrator," Journal of Renewable and Sustainable Energy 12,3, 033703 (2020).
    8 R. Boutaka, R. Bouadjemine, D. Liang, N. Hendaoui, and A. Kellou, "Numerical study of a ring-array-concentrator for Nd:YAG solar laser pumping," Journal of Physics: Conference Series 1859,1, 012057 (2021).
    9 Z. Cai, C. Zhao, Z. Zhao, X. Yao, H. Zhang, and Z. Zhang, "Highly Efficient Solar Laser Pumping Using a Solar Concentrator Combining a Fresnel Lens and Modified Parabolic Mirror," Energies 15,5, 1792 (2022).
    10 P. Yin, J. Lv, X. Wang, and R. Huang, "A spectral splitting planar solar concentrator with a linear compound parabolic lightguide for optical fiber daylighting," Renewable Energy 179, 778-787 (2021).
    11 R. A. Fields, M. Birnbaum, and C. L. Fincher, "Highly efficient Nd:YVO4 diode‐laser end‐pumped laser," Appl. Phys. Lett. 51,23, 1885-1886 (1987).
    12 F. Hanson, and D. Haddock, "Laser diode side pumping of neodymium laser rods," Appl. Opt. 27,1, 80-83 (1988).
    13 N. Metropolis, and S. Ulam, "The Monte Carlo Method," Journal of the American Statistical Association 44,247, 335-341 (1949).
    14 A. Z. Hafez, A. Soliman, K. A. El-Metwally, and I. M. Ismail, "Solar parabolic dish Stirling engine system design, simulation, and thermal analysis," Energy Conversion and Management 126, 60-75 (2016).
    15 J. H. Karp, E. J. Tremblay, and J. E. Ford, "Planar micro-optic solar concentrator," Opt. Express 18,2 1122-1133 (2010).
    16 S. Bouchard, and S. Thibault, "Planar waveguide concentrator used with a seasonal tracker," Appl. Opt. 51,28, 6848-6854 (2012).
    17 M. Weksler, and J. Shwartz, "Solar-pumped solid-state lasers," IEEE Journal of Quantum Electronics 24,6 1222-1228 (1988).

    下載圖示 校內:2025-09-29公開
    校外:2025-09-29公開
    QR CODE