| 研究生: |
鍾佳伶 Chung, Chia-Ling |
|---|---|
| 論文名稱: |
道路運輸節能減碳效益分析-以台灣為例 Analysis the benefits of energy conservation in road transport- A case of Taiwan |
| 指導教授: |
張瀞之
Chang, Ching-Chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 交通管理科學系 Department of Transportation and Communication Management Science |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 燃油消耗量 、碳排放量 、公路運輸 、碳排放成本 |
| 外文關鍵詞: | Fuel consumption, carbon emissions, road transport, carbon costs |
| 相關次數: | 點閱:158 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要因應台灣2015年公布之《溫室氣體減量及管理法》所規定總減排目標(於2050年時溫室氣體總排放量為2005年的50%)進行減排研究。配合溫管法,本研究目的為(1)計算公路運輸部門2015年至2050年之二氧化碳排放量,並假設不同情境下,評估公路運輸部門是否能達成《溫管法》之規範。此外,(2)利用碳權總量配置,衡量公路運輸部門之碳排放成本。本研究主要以公路運輸為研究範圍,分析機動車輛於車輛正常成長、車輛零成長、車輛負成長等假設下,若機動車輛使用低碳能源,如改使用液化天然氣汽車、插電式油電混合動力車等情境,並搭配碳權機制,檢視公路運輸部門碳排放減量情形。
研究結果顯示:(1)自用小客車為機動車輛中能源消耗最多之車種,致其二氧化碳排放量遠高於其他車種;而機車為機動車輛中數目最多之車種,也造成其為公路運輸部門第二大二氧化碳排放量來源;(2)達成總減排目標情境有:車輛零成長假設下之情境二(機動車輛逐年使用插電式油電混合車)、車輛負成長假設下之情境二(機動車輛逐改使用插電式油電混合車)及情境三(機動車輛逐年使用部分液化石油氣汽車與部分插電式油電混合車),上述情境中於2050年總碳排放量,分別為1,829.33萬公噸二氧化碳、1,746.66萬公噸二氧化碳,及1,818.28萬公噸二氧化碳。又用路者所需負擔碳排放費用各為19,207百萬元、18,340百萬元和19,092百萬元。綜合上述情形可知機動車輛負成長假設下之情境二,有最適總減排成效及碳排放成本;(3)在車輛負成長下,若僅欲達成溫管法減排目標,各情境機動車輛年成長率分別為97.5%、99.1%、99.45%與99.32%;(4) 本研究亦分析各情境二氧化碳排放密集度,以2050年為例,排放量最高者為車輛正常成長下之基線情境(0.700公噸CO2/美元),排放量最低者為車輛負成長下之情境二(0.176公噸CO2/美元),兩者間差距達398%。欲使台灣公路運輸部門達成《溫室氣體減量及管理法》之總節能減碳目標,需有效抑制機動車輛的成長,並提升燃料效率,方能達成減量目標。
This study focuses on analyzing carbon emissions of the road transport sector in Taiwan. Due to the declaration by the Taiwan Government of "Greenhouse Gas Reduction and Management Law", the overall emission reduction target is that, total emissions by 2050 should be cut down to at least half of those observed in 2005. This paper aims to (1) calculate carbon dioxide emissions of road transport sector from 2015 to 2050 using different scenarios. (2) Using total carbon emission configuration to measure the cost of emission in the road transport sector. Carbon dioxide emission mitigation of various vehicles is based on vehicles normal growth, zero growth and negative growth situations. Four scenarios will be presented: (1) business-as-usual, (2) Liquefied Petroleum Gas vehicles (LPGV), (3) plug-in hybrid vehicles (PHEV) and (4) mix LPG vehicles with plug-in hybrid vehicles are designed. Furthermore, the costs of carbon allowance allocation are examined. Moreover, the study further examines the costs of carbon allowance allocation.
The research concludes that: (1) small passenger vehicles consume the largest amount of fuel and produces higher carbon emissions. additionally, motor vehicles produces higher carbon dioxide emissions due to their occasionally large numbers that are frequently seen in the road; (2) There are three presumed scenarios that can achieve the specified emission reduction target: under zero growth, Scenario one (assumption of using PHEV); under negative growth, Scenario two (assumption of using PHEV) and scenario three (assumption of using LPGV and PHEV). The amount of carbon emission that could reach the reduction target in 2050 are found as follows: 1,829.33 ten thousand tons of CO2、1,746.66 ten thousand tons of CO2 and 1,818.28 ten thousand tons of CO2. Furthermore, the carbon emissions cost that would be paid by road users in each scenarios in 2050 stands as follows (from scenario 1 to 3): NTD 19,207 million, NTD 18,340 million, and NTD 19,092 million respectively. (3) The study also analyzed various scenarios of carbon dioxide emissions intensity in 2050. Among all scenarios, the highest intensity is under normal growth, baseline scenarios (0.700 tons CO2/USD); the lowest emissions is found under negative growth, Scenario two (0.176 tons of CO2/USD). The percentage emission gap between those scenarios is 398%
In order to achieve the reduction required target of "Greenhouse Gas Reduction and Management Law", this paper suggests that the policies aimed at mitigating CO2 emissions, must not only focus on controlling the growth of vehicles and allocating carbon allowance, but it must also pay more attention on increasing fuel efficiency.
交通部統計查詢網。2015年10月06日,取自:http://stat.motc.gov.tw/mocdb/stmain.jsp?sys=100
交通部運輸研究所(2013)。運輸部門能源消耗與溫室氣體減量評估模型之應用。2015年10月06日,取自:http://www.iot.gov.tw/ct.asp?xItem=723118&ctNode=1448&mp=1
朱宏淸(2000)。雙燃料系統對汽油噴射引擎性能影響及排氣分析 (Doctoral dissertation, National Taiwan University Department of Mechanical Engineering.)
行政院環保署(2015)。2015年10月06日,取自:http://www.epa.gov.tw/lp.asp?ctNode=34546&CtUnit=2525&BaseDSD=7&mp=ghgact
行政院環境保護署(2010)。臺灣節能減碳政策與具體措施。2015年10月06日,取自:unfccc.epa.gov.tw/UNFCCC/chinese/_upload/policy_ch.pdf
行政院環境保護署(2015)。線源排放量推估手冊 (PDF)。2015年10月06日,取自:http://teds.epa.gov.tw/new_main2-0-1.htm#線源
行政院節能減碳推動會秘書處(2010)。國家節能減碳總計畫。2015年10月06日,取自:http://www.aec.gov.tw/webpage/other/files/index_04_1_7.pdf
李堅明(2014)。台灣推動碳交易制度機會、挑戰與可行策略。2015年10月06日,取自:http://www.tri.org.tw/trinews/doc/1030530_1-1.pdf
李堅明、王俊凱(2003)。建立台灣永續能源發展指標與量化之研究。2015年10月23日,取自:http://www.tri.org.tw/research/impdf/748.pdf
林繼國(2010)。我國運輸部門節能減碳發展課題。2015年10月06日,取自:http://www.cit.org.tw/attachments/069_069_86%E6%88%91%E5%9C%8B%E9%81%8B%E8%BC%B8%E9%83%A8%E9%96%80%E7%AF%80%E8%83%BD%E6%B8%9B%E7%A2%B3%E7%99%BC%E5%B1%95%E8%AA%B2%E9%A1%8C.pdf
邱林錱(2008)。CDM碳權交易實務介紹。2015年10月06日,取自:http://www.ouk.edu.tw/Sysadm/FileDownLoad/ActivitiesFile/File/20091223113638002.pdf
國家發展委員會(2011)。中華民國100年國家建設計劃。2015年10月06日,取自:http://www.ndc.gov.tw/cp.aspx?n=BE69228FAB8333ED&s=2A633A8A1C85DB69
陳立誠(2015)。能源與氣候的迷思: 2兆元的政策失誤【修訂版】 (PP91-95),台北:獨立作家。
黃乙倫、吳榮華(2005)。「高油價時代瓦斯車、柴油小客車及油電(Hybrid)混合車之發展政策立場」,國立成功大學資源工程學系。
楊成宗、郭中屏(2014)。油氣雙燃料車:LPG引擎。(PP3-2-3-5),台北:全華圖書。
經濟部能源局(2015)。我國燃料燃燒之二氧化碳排放統計與分析。2015年10月06日,取自:http://web3.moeaboe.gov.tw/ECW/populace/content/wHandMenuFile.ashx?menu_id=363
道路交通管理處罰條例修正第九十二條條文(2011)。2015年10月06日,取自:http://www.president.gov.tw/PORTALS/0/BULLETINS/PAPER/PDF/7004-18.PDF
廖一嶸、徐淵靜(1997),「液化石油氣車輛使用特性與使用意願之研究 」,國立交通大學運輸與物流管理學所碩士論文。
臺灣銀行季刊第六十二卷第二期,(2013)。2015年10月06日,取自:http://www.bot.com.tw/Publications/Quarterly/Documents/62_2/62_2_6.pdf
英文文獻
Abrell, J. (2010). Regulating CO 2 emissions of transportation in Europe: a CGE-analysis using market-based instruments. Transportation Research Part D: Transport and Environment, 15(4), 235-239.
Allan, G., Lecca, P., McGregor, P., & Swales, K. (2014). The economic and environmental impact of a carbon tax for Scotland: A computable general equilibrium analysis. Ecological Economics, 100, 40-50.
Azlina, A. A., Law, S. H., & Mustapha, N. H. N. (2014). Dynamic linkages among transport energy consumption, income and CO 2 emission in Malaysia. Energy Policy,73, 598-606.
Brand, C., Anable, J., & Tran, M. (2013). Accelerating the transformation to a low carbon passenger transport system: The role of car purchase taxes, feebates, road taxes and scrappage incentives in the UK. Transportation Research Part A: Policy and Practice,49, 132-148.
Bureau, B. (2011). Distributional effects of a carbon tax on car fuels in France. Energy Economics,33(1), 121-130.
Chen, X., Huang, H., Khanna, M., & Önal, H. (2014). Alternative transportation fuel standards: Welfare effects and climate benefits. Journal of Environmental Economics and Management,67(3), 241-257.
Fu, M., & Kelly, J. A. (2012). Carbon related taxation policies for road transport: Efficacy of ownership and usage taxes, and the role of public transport and motorist cost perception on policy outcomes. Transport Policy,22, 57-69.
Guo, Z., Zhang, X., Zheng, Y., & Rao, R. (2014). Exploring the impacts of a carbon tax on the Chinese economy using a CGE model with a detailed disaggregation of energy sectors.Energy Economics,45, 455-462.
Heinrichs, H., Jochem, P., & Fichtner, W. (2014). Including road transport in the EU ETS (European Emissions Trading System): A model-based analysis of the German electricity and transport sector. Energy, 69, 708-720.
Intergovernmental Panel on Climate Change (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 2 Energy. Retrieved date June 11, 2015, http://www.ipccnggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_3_Ch3_Mobile_Combustion.pdf
Intergovernmental Panel on Climate Change (2013). The Fifth Assessment Report: Climate Change 2013. Retrieved date June 11, 2015, http://www.ipcc.ch/pdf/assessmentreport/ar5/wg1/WG1AR5_Chapter01_FINAL.pdf
Intergovernmental Panel on Climate Change (2014). Climate Change 2014: Mitigation of Climate Change. Retrieved date October 06, 2015, https://www.ipcc.ch/pdf/assessment-report/ar5/wg3/ipcc_wg3_ar5_full.pdf
International Energy Agency (2014) CO2 Emissions From Fuel Combustion Highlights 2014. Retrieved date June 11, 2015, http://www.iea.org/publications/freepublications/publication/CO2EmissionsFromFuelCombustionHighlights2014.pdf
International Energy Agency(2014) Key World Energy Statistics 2014. Retrieved date June 11, 2015, http://www.iea.org/publications/freepublications/publication/KeyWorld2014.pdf
Kay, A. I., Noland, R. B., & Rodier, C. J. (2014). Achieving reductions in greenhouse gases in the US road transportation sector. Energy Policy,69, 536-545.
Lewis, E. B. (1981). Control of body segment differentiation in Drosophila by the bithorax gene complex. Progress in clinical and biological research, 85, 269-288.
Li, H., Lu, Y., Zhang, J., & Wang, T. (2013). Trends in road freight transportation carbon dioxide emissions and policies in China. Energy Policy,57, 99-106.
Lin, B., & Xie, C. (2014). Reduction potential of CO 2 emissions in China׳ s transport industry.Renewable and Sustainable Energy Reviews,33, 689-700.
Loo, B. P., & Li, L. (2012). Carbon dioxide emissions from passenger transport in China since 1949: implications for developing sustainable transport. Energy Policy,50, 464-476.
Mashayekh, Y., Jaramillo, P., Samaras, C., Hendrickson, C. T., Blackhurst, M., MacLean, H. L., & Matthews, H. S. (2012). Potentials for sustainable transportation in cities to alleviate climate change impacts. Environmental science & technology,46(5), 2529-2537.
Modelling Guidelines TfL Traffic Manager and Network Performance Best Practice(2010).Retrieved date June 11, 2015,
http://content.tfl.gov.uk/traffic-modelling-guidelines.pdf
Ong, H. C., Mahlia, T. M. I., & Masjuki, H. H. (2011). A review on emissions and mitigation strategies for road transport in Malaysia. Renewable and Sustainable Energy Reviews,15(8), 3516-3522.
Ou, X., Zhang, X., & Chang, S. (2010). Scenario analysis on alternative fuel/vehicle for China’s future road transport: Life-cycle energy demand and GHG emissions. Energy Policy, 38(8), 3943-3956.
Pan, X., Teng, F., & Wang, G. (2014). Sharing emission space at an equitable basis: Allocation scheme based on the equal cumulative emission per capita principle. Applied Energy,113, 1810-1818.
Perdan, S., & Azapagic, A. (2011). Carbon trading: Current schemes and future developments. Energy policy, 39(10), 6040-6054.
Pongthanaisawan, J., & Sorapipatana, C. (2013). Greenhouse gas emissions from Thailand’s transport sector: Trends and mitigation options. Applied Energy, 101, 288-298.
Ristovski, Z. D., Jayaratne, E. R., Morawska, L., Ayoko, G. A., & Lim, M. (2005). Particle and carbon dioxide emissions from passenger vehicles operating on unleaded petrol and LPG fuel. Science of the Total Environment,345(1), 93-98.
Shukla, P. R., Dhar, S., & Mittal, S. (2014, March). Sustainable low carbon transport scenarios for India. In Green Energy for Sustainable Development (ICUE), 2014 International Conference and Utility Exhibition on (pp. 1-8). IEEE.
Sobrino, N., & Monzon, A. (2014). The impact of the economic crisis and policy actions on GHG emissions from road transport in Spain. Energy Policy,74, 486-498.
Stanley, J. K., Hensher, D. A., & Loader, C. (2011). Road transport and climate change: Stepping off the greenhouse gas. Transportation Research Part A: Policy and Practice,45(10), 1020-1030.
TradingEconomics(2015).Retrieved date June 11, 2015, http://www.tradingeconomics.com/taiwan/forecast
Trappey, A. J., Trappey, C., Hsiao, C., Ou, J. J., Li, S., & Chen, K. W. (2012). An evaluation model for low carbon island policy: The case of Taiwan's green transportation policy. Energy Policy,45, 510-515.
Wang, C., Cai, W., Lu, X., & Chen, J. (2007). CO 2 mitigation scenarios in China’s road transport sector. Energy Conversion and Management, 48(7), 2110-2118.
World Bank Group(2014). Turn Down the Heat : Confronting the New Climate Normal. Turn Down the Heat : Confronting the New Climate Normal. Retrieved date June 11, 2015, https://openknowledge.worldbank.org/handle/10986/20595
World Bank(2014). State and Trends of Carbon Pricing. Retrieved date October 06, 2015, http://wwwwds.worldbank.org/external/default/WDSContentServer/WDSP/IB/2014/05/27/000456286_20140527095323/Rendered/PDF/882840AR0REPLA00EPI2102680Box385232.pdf
校內:2021-02-02公開