| 研究生: |
蕭冠宇 Hsiao, Kuan-yu |
|---|---|
| 論文名稱: |
非線性演進型緩坡方程式在斜坡上的應用 An Application of Nonlinear Evolution Equation for Mild-Slope Equation on Sloping Beach |
| 指導教授: |
許泰文
Hsu, Tai-wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 緩坡方程 、非線性 |
| 外文關鍵詞: | Mild-Slope Equation, Nonlinear |
| 相關次數: | 點閱:44 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以演進型緩坡方程式 (evolution equation for mild-slope equation,EEMSE ) 之數值模式,將底床坡度展開至α2階,結合輻射邊界條件,推導出非線性演進型緩坡方程 (nonlinear evolution equation of mild-slope equation),用以模擬波浪在斜坡上的波動效應與變形,其效應包括淺化、折射、繞射、反射、碎波與能量消散等。模式計算結果與 Guza和Bowen (1976) 以及楊等人 (2004) 的理論結果進行比較,用以驗證本文模式的正確性與適用性。
底床坡度為1/10、1/5及1/3之情況,本文計算結果與楊等人 (2004)之理論結果有相同的趨勢,唯有在底床坡度為1/5與1/3時,深水和淺水海域兩者之波形相符,而中間性水深漸有差異,此差異隨著底床坡度變陡而變大。與 Guza 和Bowen (1976) 底床坡度為1/40以及1/10之波形比較發現,模式在α1階級數之數值計算結果與理論值相符合。
The evolution equation for mild-slope equation model is expended to second order in bottom slope to derive a nonlinear evolution equation of mild-slope equation. The nonlinear evolution equation of mild-slope equation model is used to simulate wave transformations such as shoaling, refraction, diffraction, reflection, wave breaking and energy dissipation.
In the condition of bottom slope on 1/10, 1/5 and 1/3, the proposed model can modify wave transformations under the sloping bottom by examining Yang’s (2004) theory and calculate the accurate results. The bottom slope on 1/40 and 1/10,
proposed model calculate the accurate results for wave phase with Guza and Bowen’s (1976) theory.
1. Berkhoff, J. C. W., “Computations of combined refraction-diffraction”, Proc. 13th Int. Conf. Coastal Engineering, ASCE, New York, pp. 471-490 (1972).
2. Biesel, F. “Study of wave propagation in water of gradually varying depth,” InGravity Waves, U.S. National Bureau of Standards, Circular 521, pp. 243-253 (1952).
3. Booij, N., “Gravity waves on water with non-uniform depth and current”, PhD Thesis. Delft University of Technology, Delft, the Netherlands, pp. 130 (1981).
4. Chu, V. H. and Mei, C. C., “On slowly-varying Stokes waves.” Journal of Fluid Mechanics, Vol. 41(4), pp. 873-887 (1970).
5. Djordjevic, V.D. and Rdekopp, L.G., “On the Development of Packets of Surface Gravity Wave Moving Over An Uneven Bottom,” Z. Angew. Math. Phys., Vol. 29, pp. 950-962 (1978).
6. Guza, R.T, Bowen, A.J., “Resonant interactions for wave breaking on a beach” , Coastal Engineering, Vol. 15, pp. 560-579 (1976).
7. Hsu, T. W. and C. C. Wen, ”A parabolic equation extened to account for rapidly varying topography”, Ocean Engineering, Vol. 28, pp. 1479-1498 (2001a).
8. Hsu, T. W. and C. C. Wen, “On radiation boundary conditions and wave transformation across the surf zone”, China Ocean Engineering, Vol. 15, No. 3, pp. 395-406 (2001b).
9. Ito, Y. and Tanimoto, K., “A Method of Numerical Analysis of Wave Propagation-Application to Wave Diffraction and Refraction,” Proceedings of Thirteenth International Coastal Engineering Conference, ASCE, pp. 503-522 (1972).
10. Kaihatu, J. M. and Kirby, J. T., “Spectral Evolution of Directional Finite Amplitude Dispersive Waves in Shallow Water,” Proc. 23rd Int. Conf. Coastal Eng., Venice. ASCE, pp. 364-377 (1992).
11. Kaihatu, J. M. and Kirby, J. T., “Nonlinear Transformation of Waves in Finite Water Depth,” Phys. Fluid, Vol. 7, No. 8, pp. 1-12 (1995)
12. Kirby, J.T. and Dalrymple, R.A., “A Parabolic Equation for the combined Refraton - Diffration of Stokes Waves by Mildly Varying Topography,” Journal of Fluid Mechanics, Vol. 136, pp. 453-466 (1983).
13. Kirby, J.T. and Dalrymple, R.A., “Verification of A Parabolic Equation for Propagation of Weakly – Nonlinear Waves,” Coastal Engineering, Vol. 8, pp. 219-232 (1984).
14. Li, B., “An Evolution Equation for Water Waves,” Coastal Engineering, Vol. 23, pp. 227-242 (1994a).
15. Li, B., “A Generalized Conjugate Gradient Model for the Mild Slope Equation,” Coastal Engineering, Vol. 23, pp. 215-225 (1994b).
16. Liu, P.L.F. and Tsay, T.K., “Refraction – Diffraction Model for Weakly Nonlinear Water Waves,” Journal of Fluid Mechanics, Vol. 136, pp. 453-466 (1984).
17. Liu, P. L. F. and Dingemans, M. W., “Derivation of the third-order evolution equations for weakly nonlinear water waves propagating overuneven bottoms.” Wave Motion, Vol. 11(1), pp. 41-64 (1989).
18. Madsen, P.A. and Larsen, J., “An Efficient Finite-Difference Approach to the Mild-Slope Equation,” Coastal Engineering, Vol. 11, pp. 329-351 (1987).
19. Radder, A.C., “On the Parabolic Equation Method for Water Wave Propagation,” Journal of Fluid Mechanics, Vol. 95, No. 1, pp. 159-176 (1979).
20. Suh, K.D., Lee, C. and Part, W.S., “Time-Dependent Equations for Wave Propagation on Rapidly Varying Topography,” Coast l Engineering, Vol. 32, pp. 91-117 (1997)
21. Tang, Y., “Linear and Nonlinear Water Waves on Water with Variable Depth –Theoretical and Numerical Models for Combined Refraction – Diffraction with Reflection,” Ph.D. dissertation, Dept. of Civil Engineering Laval University, Quebec (1994).
22. Tang, Y. and Oullet, Y.,“A New Kind of Nonlinear Mild-Slope Equation for Combined Refraction – Diffraction of Multifrequency,” Ph.D. dissertation, Dept. of Civil Engineering Laval University, Quebec (1994).
23. Tang, Y. and Oullet, Y., “Models for Combined Refraction – Diffraction of Water Waves with Nonlinear Harmonics,” Coastal Engineering, Vol. 31, pp. 3-36(1997).
24. Weiss, J. M. , “Three-dimensional linear solution for wave propagation with sloping bottom,” Journal of Oceanic Engineering, IEEE, Vol. 22(2), pp. 203-210 (1997).
25. 陳陽益、湯麟武,「平緩坡度底床上前進的表面波」,第十四屆海洋工程研討會論文集,pp.A21-A29 (1992).
26. 陳陽益,「平緩坡度底床上前進的表面波」,第十九屆海洋工程研討會論文集,pp.112-121 (1997).
27. 陳陽益、張富東,「平緩坡度底床上前進的試驗研究」,第二十一屆海洋工程研討會論文集,pp.165-174 (1999).
28. 張憲國,「斜坡上入反射波的推估方法」,2000兩岸港口及海岸開發研討會論文集,新竹,pp.39-44 (2000)。
29. 楊炳達,陳陽益,湯麟武,歐善惠,「前進波列斜向傳遞於等緩坡度底床之研究」, 第二十二屆海洋工程研討會論文集,高雄,pp. 1-8 (2000)。
30. 蔡丁貴、劉立方,「非線性波浪引起港池振盪之研究 (三)」,國立台灣大學土木研究所 (2001)。
31. 溫志中,「修正緩坡方程式之研發與應用」,博士論文,國立成功大學(2001)。
32. 許泰文,「近岸水動力學」,中國土木工程學會,166頁 (2003)。
33. 陳陽益,「非陡坡底床上前進波的非線性解析:I. 系統化攝動展開模式」,第二十五屆海洋工程研討會論文集,pp.39-48 (2003a).
34. 陳陽益,「非陡坡底床上前進波的非線性解析:II. 至 階的解析解及印證」,第二十五屆海洋工程研討會論文集,pp.49-58 (2003b).
35. 楊炳達,「緩坡底床上斜向波列變形之理論解析」,博士論文,國立成功大學(2004)。
36. 許弘莒,「斜坡底床上前進波的非線性解析」,碩士論文,國立成功大學(2005)。