| 研究生: |
黃燦 Huang, Can |
|---|---|
| 論文名稱: |
探究消費者對送餐服務機器人的潛在需求 Exploring consumers' potential demand for food delivery service robots |
| 指導教授: |
何俊亨
Ho, Chun-Heng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 工業設計學系 Department of Industrial Design |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | Kano模型 、送餐服務機器人 、用戶需求 、品質機能展開 |
| 外文關鍵詞: | Kano model, service robots, user needs, quality function deployment |
| 相關次數: | 點閱:402 下載:65 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著第四次工業革命的到來,這意味著人們想要追求更智慧的服務。智慧化產品出現,送餐服務機器人也逐漸普及,影響了過去餐飲業局限於人工服務的場景,市場上逐漸出現了以送餐服務機器人和人工協同完成工作的模式,對餐飲業帶來了影響,並且給人們帶來全新的體驗。
本研究利用Kano模型和QFD模型對使用送餐服務機器人的顧客端的用戶需求進行整理分析。首先通過用戶訪談KJ彙整出用戶需求要素,並分類為五大項:基礎功能、附加功能需求、交互需求、服務需求、外觀需求。
透過Kano模型分析出重要的用戶需求品質要素,避障(躲避障礙物)是必備型品質要素,如果機器人不能有效避障,用戶的滿意度將會急劇下降。期望型品質要素包括消毒、取餐錯誤提醒和餐點送達準確率高,具備這些要素,用戶的滿意度會相應提高,但如果缺乏這些要素,用戶的滿意度會下降。魅力型品質要素包括語音辨識顧客指令、常備餐具(如筷子、紙巾)、顯示菜品名稱、點餐功能、製冷層、短送餐配送時間等要素會讓用戶感到驚喜。另一方面,廣告是反向型品質要素,使用者在使用送餐服務機器人過程中並不需要滿足這個需求。
再基於品質機能展開的理論模型,將用戶需求要素轉化為設計需求要素,計算其重要度並排序,用以確定關鍵的設計需求,分別是物聯網設計需求,獨立的蓋子或隔間設計需求,簡潔的資訊介面交互設計需求,易於使用的點餐系統設計需求,第五名是準確的定位系統設計需求,額外的儲物空間設計需求,給設計者提供優化建議作為參考。
With the advent of the Fourth Industrial Revolution, it signifies that people are seeking smarter services. Intelligent products have emerged, and delivery service robots are gradually becoming popular, which has influenced the traditional scenario of the food and beverage industry limited to human service. A new model has emerged in the market where delivery service robots and human collaboration are used to complete tasks, bringing impact to the food and beverage industry and providing people with a completely new experience.
In this research, the Kano model and QFD model are utilized to analyze and organize user requirements on the customer side for using delivery service robots. Firstly, user interviews are conducted to gather user requirement elements, which are classified into five categories: basic functional requirements, additional functional requirements, interaction requirements, service requirements, and aesthetic requirements.
Through the analysis with the Kano model, important quality elements of user requirements are identified. Avoidance of obstacles (obstacle avoidance) is a must-have quality element. If the robot cannot effectively avoid obstacles, user satisfaction will significantly decline. Expected quality elements include disinfection, error notification for meal retrieval, and high accuracy of meal delivery. Having these elements will correspondingly increase user satisfaction, while lacking them will decrease user satisfaction. Attractive quality elements include voice recognition of customer commands, availability of utensils (such as chopsticks and napkins), display of dish names, ordering functionality, refrigeration layer, and short delivery time, which will surprise and delight users. On the other hand, advertisements are a reverse quality element that users do not need to fulfill when using delivery service robots.
Based on the theoretical model derived from quality function deployment, user requirement elements are transformed into design requirement elements, and their importance is calculated and ranked to determine key design requirements. These include Internet of Things (IoT) design requirements, a separate lid or partition design requirement, a concise information interface interaction design requirement, an easy-to-use ordering system design requirement, accurate positioning system design requirement as the fifth, and additional storage space design requirement. These optimization recommendations serve as references for designers.
(2020).2020中國服務機器人產業發展研究報告解析. 機器人產業(04),83-100. doi:10.19609/j.cnki.cn10-1324/tp.2020.04.016.
林原民(2018)。消費者使用機器人Pepper意願之研究。輔仁大學資訊管理學系碩士在職專班碩士論文,新北市。 取自https://hdl.handle.net/11296/mnm8sh
鄭文慈(2018)。顧客對服務型機器人之接受度:以零售業為例。國立臺灣科技大學企業管理系碩士論文,臺北市。 取自https://hdl.handle.net/11296/w3npek
Allport, G. W. (1921). Personality and character. Psychological Bulletin, 18(9), 441–455.
Bernotat, J., & Eyssel, F. (2017). A robot at home — How affect, technology commitment, and personality traits influence user experience in an intelligent robotics apartment. 2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), 641–646. https://doi.org/10.1109/ROMAN.2017.8172370
Bhattacherjee, A. (2001). Understanding Information Systems Continuance: An Expectation-Confirmation Model. MIS Quarterly, 25(3), 351. https://doi.org/10.2307/3250921
Costa, P. T., & McCrae, R. R. (1992). Four ways five factors are basic. Personality and Individual Differences, 13(6), 653–665. https://doi.org/10.1016/0191-8869(92)90236-I
Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319. https://doi.org/10.2307/249008
Forgas-Coll, S., Huertas-Garcia, R., Andriella, A., & Alenyà, G. (2022). How do Consumers’ Gender and Rational Thinking Affect the Acceptance of Entertainment Social Robots? International Journal of Social Robotics, 14(4), 973–994. https://doi.org/10.1007/s12369-021-00845-y
Heerink, M., Krose, B., Evers, V., & Wielinga, B. (2008). The influence of social presence on enjoyment and intention to use of a robot and screen agent by elderly users. RO-MAN 2008 - The 17th IEEE International Symposium on Robot and Human Interactive Communication, 695–700. https://doi.org/10.1109/ROMAN.2008.4600748
Heerink, M., Kröse, B., Evers, V., & Wielinga, B. (2010). Assessing Acceptance of Assistive Social Agent Technology by Older Adults: the Almere Model. International Journal of Social Robotics, 2(4), 361–375. https://doi.org/10.1007/s12369-010-0068-5
Heerink, M., Kröse, B., Wielinga, B., & Evers, V. (2008). Enjoyment intention to use and actual use of a conversational robot by elderly people. Proceedings of the 3rd International Conference on Human Robot Interaction - HRI ’08, 113. https://doi.org/10.1145/1349822.1349838
Holbrook, M. B. (1998). Closely Read Books. Marketing Literature, Consumption as Text, and the Leaves from Our Lives: Slow, Slower, and Slowest. Journal of Marketing, 62(3), 141. https://doi.org/10.2307/1251749
Hong, S., Thong, J. Y. L., & Tam, K. Y. (2006). Understanding continued information technology usage behavior: A comparison of three models in the context of mobile internet. Decision Support Systems, 42(3), 1819–1834. https://doi.org/10.1016/j.dss.2006.03.009
Ivanov, S., Webster, C., & Garenko, A. (2018). Young Russian adults’ attitudes towards the potential use of robots in hotels. Technology in Society, 55, 24–32. https://doi.org/10.1016/j.techsoc.2018.06.004
Lee, Y., Kozar, K. A., & Larsen, K. R. T. (2003). The Technology Acceptance Model: Past, Present, and Future. Communications of the Association for Information Systems, 12. https://doi.org/10.17705/1CAIS.01250
Parasuraman, A., & Grewal, D. (2000). The Impact of Technology on the Quality-Value-Loyalty Chain: A Research Agenda. Journal of the Academy of Marketing Science, 28(1), 168–174. https://doi.org/10.1177/0092070300281015
Radomir, L., & Nistor, C. V. (2014). Comparing the Original and the Revised SSTQUAL Scale among High-educated Consumers in Romania. Procedia Economics and Finance, 15, 926–934. https://doi.org/10.1016/S2212-5671(14)00564-4
Ramachandran, A., & Chidambaram, V. (2012). A review of customer satisfaction towards service quality of banking sector. Periodica Polytechnica Social and Management Sciences, 20(2), 71. https://doi.org/10.3311/pp.so.2012-2.02
Salem, M., Lakatos, G., Amirabdollahian, F., & Dautenhahn, K. (2015). Would You Trust a (Faulty) Robot? Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction, 141–148. https://doi.org/10.1145/2696454.2696497
Seo, K. H., & Lee, J. H. (2021). Understanding Risk Perception toward Food Safety in Street Food: The Relationships among Service Quality, Values, and Repurchase Intention. International Journal of Environmental Research and Public Health, 18(13), 6826. https://doi.org/10.3390/ijerph18136826
Venkatesh, Morris, Davis, & Davis. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425. https://doi.org/10.2307/30036540