簡易檢索 / 詳目顯示

研究生: 方俊傑
Fang, Chun-Chieh
論文名稱: 無機營養鹽促進柴油之生物分解之研究
Enhanced Biodegradation of Diesel by Inorganic Nutrients
指導教授: 簡錦樹
Jean, Jiin-Shuh
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系碩士在職專班
Department of Earth Sciences (on the job class)
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 97
中文關鍵詞: 營養鹽柴油缺氧耗氧微生物降解
外文關鍵詞: nitrogen, biodegradation, phosphorous, diesel, aerobic, microaerobic, nutrients
相關次數: 點閱:74下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以中油廢水處理廠一級溢出污水,分離出柴油分解菌株,於實驗室的50ml血清瓶石英砂中分解柴油污染物,在耗氧環境或缺氧環境以各種不同的無機營養鹽(NH4)NO3及(NH4)H2PO4生長90天的條件試驗柴油的分解速率與細菌生長量。在耗氧環境,柴油分解菌若無營養鹽時的分解率最低為12.5%,僅有氮營養鹽時的柴油分解率達到26.0%,若同時以N:P=10:1莫耳比為營養鹽其分解率可達到33.4%,另外,以Bushnell-Haas培養基當營養鹽分解率最高可達37.8 %。因此,當有氮營養鹽時的柴油分解速率可提高一倍以上。若再加入磷之營養鹽時,柴油分解速率約為無營養鹽分解之三倍。柴油分解菌若無營養鹽時,第90天的柴油分解菌生長量僅為6×106 CFU/g,以氮營養鹽時油分解菌生長量為5.9×107CFU/g。以N:P=10:1莫耳比為營養鹽時分解菌生長量為2.2 × 108 CFU/g;以Bushnell-Haas培養基當營養鹽的柴油分解菌生長量最高可達3.5×108 CFU/g。
    在缺氧環境,以分解效率而言,柴油分解菌若無營養鹽時的柴油分解率最低為5.3%,僅有氮營養鹽時的柴油分解率達到7.9%,若同時以N:P=10:1莫耳比為營養鹽其分解率可達到10.9%,另外,以Bushnell-Haas培養基當營養鹽分解率最高可達14.1 %。如同耗氧環境,當有氮營養鹽時柴油分解效率可提高一倍以上。若再加入磷之營養鹽時,柴油分解速率約為無營養鹽分解之三倍。油分解菌若無營養鹽時,第90天柴油分解菌的生長量僅為 5×106 CFU/g,以氮營養鹽時的柴油分解菌生長量為3.5×107 CFU/g,以N:P=10:1莫耳比為營養鹽時的柴油分解菌的生長量為8.3×107 CFU/g,若以Bushnell-Haas培養基當營養鹽的柴油分解菌生長量最高可達1.0×108 CFU/g。因此,無論在耗氧或缺氧環境下,氮與磷之營養鹽對柴油菌分解柴油的關係影響非常重大。
    將柴油分解菌株予以分離及純化,經16S rDNA基因序列分析比對主要為Pseudomonas 屬,菌種可能為Pseudomonas nitroreducens, Pseudomonas azelaica, Pseudomonas multiresinivorans 或Pseudomonas acephalitica。

    The primary sewage effluents from the Waste water treatment
    plant of China Petroleum Company Refinery in Kaohsiung were
    isolated for bacteria that can biodegrade diesel in quartz sand contained in 50 ml of sterilized glass vials. The bacterial fluids were cultivated for 90 days of growth with the inorganic nutrients of (NH4)NO3 and (NH4)H2PO4 under the aerobic or microaerobic conditions. Then the biodegradation rates of diesel and bacterial
    growth were measured. Under the aerobic conditions, the biodegradation rate of diesel without the addition of inorganic nutrients was the lowest one (12.5% ) , but could be increased to 26.0% when the nitrogen nutrient was added. The biodegradation rate could be increased to 33.4% when the nutrients of nitrogen and phosphorous (10:1 by mole )and could be up to 37.8% when the Bushnell-Haas culture medium was employed. This revealed that the biodegradation rate of diesel could be increased by one-fold when nitrogen was
    added and could be increased by three-folds when nitrogen and
    phosphorous were added. The diesel-biodegraded bacterial colonies after 90 days of growth without inorganic nutrients were only 6×106 CFU/g,but could be increased to 5.9×107 CFU/g when nitrogen was added and could be in creased to 2.2×108 CFU/g when the nutrients of nitrogen and phosphorous ( 10:1 by mole) and could be up to 3.5×108 CFU/g when the Bushnell-Haas cultured medium was employed.
    Under the microaerobic conditions, the biodegradation rate of
    diesel without the addition of inorganic nutrients was the lowest one(5.3%), but could be increased to 7.9% when the nitrogen nutrient was added. The biodegradation rate could be increased to 10.9% when the nutrients of nitrogen and phosphorous (10:1 by mole) and could be up to 14.1% when the Bushnell-Haas culture medium was employed. Similar to the aerobic conditions , the biodegradation rate of diesel could be increased by one-fold when nitrogen was added and could be increased by there-folds when nitrogen and phosphorous wore added. The diesel-biodegraded bacterial colonies after 90 days of growth without inorganic nutrients were only 5×106 CFU/g, but could be increased to 3.5×107 CFU/g when
    nitrogen was added and could be increased to 8.3×107 CFU/g when nutrients of nitrogen and phosphorous(10:1 by mole)and could be up to 1.0×108 CFU/g when the Bushnell-Hass culture medium was employed. Therefore, nitrogen and phosphorous can play an important role in the biodegradation of diesel by bacteria cultured in either aerobic or anaerobic conditions. Two bacterial strains isolated from the primary sewage effluents were magnified based on 16S rRNA gene and sequenced and subsequently aligned with the reference strains. The bacterial isolated were identified as the genus of Pseudomonas, suggesting to be Pseudomonas azelaica, Pseudomonas nitroreducens, Pseudomonas multiresinivorans, or Pseudomonas acephalitica.

    目 錄 摘要........................................................ I Abstract..................................................... III 誌謝........................................................ V 目錄........................................................ VI 表目錄...................................................... IX 圖目錄...................................................... XI 附 錄....................................................... XII 壹、緒論..................................................... 1 1.1 研究動機................................................ 1 1.2 研究目的................................................ 2 貳、文獻回顧................................................ 3 2.1 石油碳氫化合物對於環境之影響............................ 3 2.2 自然界中石油碳氫化合物之消減機制......................... 3 2.3 微生物對石油碳氫化合物之降解作用......................... 5 2.4 環境因子對微生物之影響................................... 6 2.5 微生物對碳氫化合物之代謝途徑............................ 15 VII 叄、實驗材料與方法.......................................... 17 3.1 樣品來源................................................ 17 3.2 培養基及相關試劑組成..................................... 17 3.3 器材.................................................... 18 3.4 儀器.................................................... 18 3.5 廠商細目................................................ 19 3.6 菌種脫附................................................ 20 3.7 培養基溶液的製備........................................ 20 3.8 試驗方法與流程.......................................... 22 3.9 DNA 洋菜膠體電泳....................................... 26 3.10 聚合酶連鎖反應......................................... 27 3.11 PCR 產物DNA 片段之回收與序列分析..................... 28 3.12 序列比對系統分析....................................... 28 3.13 限制酵素法............................................ 29 肆、結果..................................................... 30 4.1 耗氧條件分解............................................ 30 VIII 4.2 缺氧條件分解............................................ 36 4.3 菌種鑑定與親緣關係...................................... 42 4.4 菌株鑑定................................................ 44 伍、討論.................................................... 45 5.1 耗氧分解................................................ 45 5.2 缺氧分解................................................ 48 陸、結論.................................................... 50 參考文獻.................................................... 51

    參考文獻
    王孟群,實用微生物學實驗,九州出版社, 1983
    林良平,土壤微生物學,南山堂出版社, 1987
    陳振陽等,最新微生物學,匯華出版社, 218-220, 1996
    趙映琇,石油分解微生物利用於土壤油污之生物復育,國立雲林科技大
    學環境與安全工程研究所碩士論文, 2002
    李建德,油在土壤中之消減機制,台灣大學環境工程研究所碩士論文,
    1980
    林茗儀,活性污泥脫硝基因及脫硝菌多樣性之研究,中原大學土木工
    程學系碩士學位論文,2005
    謝崇良,苗栗地區路地深部打鹿沙延地層延十中菌種之分離與鑑定,
    成功大學地球科學研究所碩士論文, 2002
    蘇勳璧,微生物學,藝軒出版社,87-91, 1992
    Aitken C.M., Jones D.M., and Larter S.R., Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs. Nature ,431, 291–294 , 2004
    Atlas R. M. and Bartha R., Biodegradation of petroleum in seawater at low temperatures, Can. J. Microbial., Vol.18,.1851-1855, 1972
    Atlas R. M. and Bartha R., Stimulated biodegradation of oil slicks using
    oleophilic fertilizers, Environ. Sci. Technol. , Vol.7, 538-541, 1973
    Atlas R. M, Bioremediation of Petroleum Pollutants., International
    Biodeterioration & Biodegradation, Vol.35, 317-327, 1995
    Atlas R. M., Petroleum biodegradation and oil soil bioremediation,
    Marine Pollution Bulletin, 31, 178-182, 1998
    Arp D. J., Understanding the diversity of trichloroethene co-oxidations,
    Current Opinion in Biotechnology, 6, 352-358, 1995
    Audino M., Grice K., Alexander R., Boreham C. J., and Kagi R. I.,
    Unusual distribution of monomethylalkanes in Botryococcus
    braunii–rich samples: origin and significance. Geochimica et
    Cosmochimica Acta 65, 1995-2006, 1992
    52
    Balkwill D. L., Numbers, diversity, and morphological characterization of
    aerobic, chemoheterotrophic bacteria in deep subsurface sediments from a site in South Carolina. Geomicrobiol J, 7, 33-51, 1989
    Balkwill D. L., Fredrickson J. K., and Thomas J. M. , Vertical and horizontal variations in the physiological diversity of the aerobic chemoheterotrophic bacterial microflora in deep Southeast Coastal Plain subsurface sediments. Appl Environ Microbiol, 55,1058-1065,
    1989
    Begon˜a V., Andre′s I., Rafael B., del Campo P. P., Mikael M. D.,Erik E.S., Zhongtang Y., Gunnel D.,and William W.M., Degradation of Polycyclic Aromatic Hydrocarbons at Low Temperature under Aerobic and Nitrate-Reducing Conditions in Enrichment Cultures from Northern Soils, App Environ Microbiol, 69,275-284, 2003
    Begon˜a V., Andre′s I., Rafael B. ,del Campoc P. P., and de Castrod D. L., Bioremediation of an area contaminated by a fuel spill, J. Environ. Monit., 3, 274–280, 2001
    Bernard D. D., Pseudomomads and Other Nonfermenting Bacilli.
    Microbiology eithed by third edition, 675-676, 1981
    Blakemore R. P., Maratea D. and Wolfe R.S., Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium. Journal of Bacteriology, 140, 702-709,1979
    Boivin-Jahns V., Bianchi A., Ruimy R., Garcin, J., Daumas S., and Christen R. , Comparison of phenotypical and molecular methods for the identification of bacterial strains isolated from a deep subsurface environment. Appl Environ Microbiol , 61, 3400-3406, 1995
    Bodour A. A., Wang J. M., Brusseau M. L., and Maier R.M., Temporal change in culturable phenanthrene degraders in response to long-term exposure to phenanthrene in a soil column system. Appl Environ Microbiol , 5, 888-895, 2003
    Boone D. R., Liu Y., Zhao Z.J., Balkwill D. L., Drake G. R., Stevens T. O., and Aldrich H. C., Bacillus infernus sp. nov. an Fe(III)- and Mn(IV)-reducing anaerobe from the deep terrestrial subsurface. Int J Syst Bacteriol, 45 , 441-448, 1995
    Bregnard T. P., Hohener P., Haner A., and Zeyer J., Anaerobic degradation of pristine in nitrate-reducing microcosms and enrichment culture,
    Appl. Environ. Microbiol., 63 , 2077-2081, 1997
    Brockman F. J., Kieft T. L., Fredrickson J. K., Bjornstad B. N., Li S. W., Spangenberg W., and Long P. E., Microbiology of vadose zone paleosols in south-central Washington State. Microb Ecol, 23, 279-301, 1992
    Brown R. A.,and Norris R. D., The evolution of a technology:
    hydrogenperoxide in in-situ bioremediation, edited by Hinche, R. E., Alleman, B. C., Hoeppel, R. E., and Miller, R. N., Lewis Publisher, 148-162, 1994
    Bruce E. R., In-Situ Bioremediation, Noyes Publications Co.,New Jersey,1994.
    Chen J., Bi Y., Zhang J., and Li S., Oil-source correlation in the Fulin basin, Shengli petroleum province, East China. Organic Geochemistry, 24, 931-940, 1996
    Crocker F. H., Fredrickson J. K., White D. C., Ringelberg D. B.,and Balkwill D. L., Phylogenetic and physiological diversity of
    Arthrobacter strains isolated from unconsolidated subsurface
    sediments. Environ Microbiol, 146, 1295-1310, 2000
    Chunqing J., Robert A.R, Robert I. K.,and Murray A.P., Origin of perylene in ancient sediments and its geological significance. Organic Geochemistry , 31, 1545-1559, 2000
    Colwell R. R. and Walker J.D., Ecological aspects of microbial degradation of petroleum in the marine environment, Crit. Rev. Microbiol.,Vol 5, 423-445., 1977.
    Cooney J. J., The Fate of Petroleum Pollutant in Freshwater Ecosystems,.
    In R. M. Atlas (ed.), Petroleum microbiology. Macmillan Publishing
    54
    Co., New York, 399-434, 1984
    Davis S. J., and Gibbs C. F. , The effect of weathering on crude oil
    residue exposed at sea, Water Res., Vol. 9, 275-285, 1975
    Dibble J. T., and R. Bartha, R. Effect of environment parameters on the
    biodegradation of oil sludge, Appl. Environ. Microbial., Vol.37,
    729-739, 1979
    Edwin H. L., Glucose-nonfermeting Gram negative Bacteria. Nanual of
    Clinical Microbiology, fourth edition, 335~338, 1985
    Ellis L., Singh R.K., and Alexander R.K.R., Formation of isohexyl
    alkylaromatic hydrocarbons from aromatization-rearrangement of
    terpenoids in the sedimentary environment: A new class of
    biomarker. Geochimica et Cosmochimica Acta, 23, 4747-4763, 1996
    Johnson E.L., and Hyman M.R., Propane and n-Butane Oxidation by
    Pseudomonas putida GPO1. Appl Environ Microbiol,72, 950-952,
    2006
    Frankel R. B., Blakemore R. P., and Wolfe R.S.,Magnetite in freshwater
    magnetotactic bacteria. Science, 203, 1355-1356, 1979
    Fredrickson J. K., Balkwill D. L., Zachara J. M., Li S. W., Brockman F. J.,
    and Simmons M. A., Physiological testing and distribution of
    heterotrophic bacteria in deep Cretaceous sediments of the Atlantic
    Coastal Plain. Appl Environ Microbiol ,57, 402-411, 1991
    Fredrickson J. K., Brockman,F. J., Bjornstad B. N. ,
    Microbiological characteristics of pristine and contaminated deep
    vadose sediments from an arid region. Geomicrobiol J ,11, 95–107,
    1993
    Fredrickson J. K., McKinley J. P., Nierzwicki-Bauer S. A., White D. C.,
    Ringelberg D. B., Rawson S. A., Li S., Brockman F. J., and
    Bjornstad B. N., Microbial community structure and
    biogeochemistry of Miocene subsurface sediments: implications for
    long-term microbial survival. Mol Ecol, 4, 619-626, 1995
    Ghiorse W. C., and Wilson J. T. , Microbial ecology of the terrestrial
    55
    subsurface. Adv Appl Microbiol ,33, 107-272, 1988
    Gunkel W., Experimentell okologische Untersuchungen uber die
    limitierenden Faktoren des mikrobiellen Olabbaues in marinen
    Milieu. Helgol. Wiss. Meeresunters 15:210-224, 1967.
    Haq B.U., Hardenbol J., and Vail P.R., Chronology of fluctuation sea
    levels since the Triassic. Science, 235,1156-1167, 1987
    Hunt J.M., Petroleum Geochemistry and Geology, 2nd, New York., 1996
    Hunt J.M., Philp, R. P., Kvenvolden, K. A., Early developments in
    petroleum Geochemistry. Organic Geochemistry, 33, 1025-1052,
    2002
    Head I. M., Saunders J. R., and Pickup R. W.,Microbial evolution,
    diversity, and ecology: a decade of ribosomal RNA analysis of
    uncultivated microorganisms. Microb Ecol ,35, 1-12, 1998
    Head I., Martim D.J., and Stever, Later Biological activity in the deep
    subsurface and the origin of heavy oil. Nature, 426, 344 – 352, 2003
    Haldeman D. L. and Amy, P. S., Bacterial heterogeneity in deep
    subsurface tunnels at Ranier Mesa, Nevada Test Site. Microb Ecol
    25, 183-194, 1993
    Haldeman D. L., Amy P. S., Ringelberg D., and White D.C.,
    Characterization of the microbiology within a 21 m3 section of rock
    from the deep subsurface. Microb Ecol 26, 145-159, 1993
    Jensen E.C., Schrader H.S., Riel and B, Thompson T.L., Lee K.W.
    Nickerson, and Kokjohn T.A., Prevalence of broad-host-range lytic
    bacteriophages of sphaerotilus natans, Escherichia coli, and
    Pseudomonas aeruginosa. Appl Environ Microbiol, 64(2), 575-580,
    1998
    Kator H., Miget R., and Oppenheimer C. H., Utilization of paraffin
    hydrocarbons in crude oil by mixed cultures of marine bacteria.
    Paper no. SPE 4206. Symposium on Environmental Conservation.
    Society ofPetroleum Engineers, Dallas, Tex. 1972.
    Kimura M., A simple method for estimating evolutionary rates of base
    56
    substitutions through comparative studies of nucleotide sequences.
    Journal of Molecular Evolution, 16, 111-120, 1980
    Kissin Y. V., Catagenesis of light aromatic compounds in petroleum.
    Organic Geochemistry ,29(4), 947-962, 1998
    Kieft T. L., Amy P. S., Brockman F. J., Fredrickson J. K., Bjornstad B. N.
    and Rosacker L. L.,Microbial abundance and activities in relation to
    water potential in the vadose zone of arid and semiarid sites. Microb
    Ecol, 26, 59-78, 1993
    Kormas K. A., Smith D. C., Edgcomb V., and Teske A., Molecular
    analysis of deep subsurface microbial communities in Nankai
    Trough sediments (ODP Leg 190, Site 1176). FEMS Microbiology
    Ecology, 45(2), 115-125, 2003
    Kumar S., Tamura K., Jakobsen I. B., and Nei M.,MEGA2: molecular
    evolutionary genetics analysis software. Bioinformatics, 17,
    1244-1245, 2001
    Little B. and Wagner P., An Overview of Microbiologically Influenced
    Corrosion of Metals and Alloys Used in the Storage of Nuclear
    Wastes. Can J Microbiol, 42, 367–374, 1996
    Leu J.Y., McGovern-Traa C. P., Porter A. J. R., and Hamilton W. A., The
    same species of sulfate-reducing Desulfomicrobium occur in
    different oil field environment in the North Sea. Letters in Appl
    Microbiol, 29, 246-252, 1999
    Liu S. V., Zhou J., Zhang C., Cole D. R., Gajdarziska-Josifovska M., and
    Phelps T. J., Thermophyllic Fe(III)-reducing bacteria from the deep
    subsurface: The evolutionary implications. Science, 277, 1107-1109,
    1997
    Ludzack F. L. and Kinkead. D., Persistence of oily wastes in polluted
    water under aerobic conditions. Ind. Eng. Chem. 48:263-267. 1972
    Mackay D. and McAuliff C. D., Fate of hydrocarbons discharged at
    sea., Oil Chem. Pollut., 5, 1-20, 1988
    Margesin R., Labbe′ D. Schinner F., Greer C. W, Characterization of
    57
    Hydrocarbon-Degrading Microbial Populations in Contaminated and
    Pristine Alpine Soils, Appl Environ Microbiol, 69,275-284, 2003
    Mann S., Sparks N. H. C., Frankel R. B., Bazylinski D. A., and Jannasch
    H. W., Biomineralization of ferrimagnetic gregite (Fe3S4) and iron
    pyrite (FeS2) in a megnetotactic bacterium. Nature, 343, 259-261,
    1990
    McMillan J. H., Kerr J. M.and Gray N. R., Microcosm studies of
    factors that influence bioremediation of crude oils in soil.
    Proceedings of the SPE/EPA Exploration and Production
    Environmental Conference, 389-401, 1993
    Mikael Eriksson, Jong-OK KA., and William W. M.,Effects of Low
    Temperature and Freeze-Thaw Cycles on Hydrocarbon
    Biodegradation in Arctic Tundra Soil, Appl Environ Microbiol,
    67,5107-5112, 2001
    Moldowan J. M., Albrecht p. and Philp R. P., biological Markers in
    sediments and petroleum.Prentice Hall, Englewood Cliffs, NJ,410,
    1992
    Murry R.G.E., Brenner D.J., Brgant. M.P., Bacillus, Bergey’s Mannual of
    systentati Bacteriology., 2,1105-1120, 1984
    Naanuma T., Search for life in deep biospheres. Biol Sci Space, 7,310-317,
    2003
    Noel R. K., Gram-negative aerobic rods and cocci. Bergey’s Manual of
    Systematic Bacteriology, I, 361~370, 1984
    Olivieri R., Bacchin P., Robertiello A., and Tonolo. A., Microbial
    degradation of oil spills enhanced by a slow-release fertilizer. Appl.
    Environ. Microbiol. 31:629-64. 1976
    Omry K., Vishnia K., Eliora Z. Ron, and Eugene Rosenberg, Petroleum
    Pollution Bioremediation Using Water-Insoluble Uric Acid as the
    Nitrogen Source, Appl Environ Microbiol, 6337–6339, 2003
    Ortege-Calro J. and Saiz-Jimenez, C.,Effect of humic fractions andclay
    on biodegradation of pheanthrene by a Pseudomonas fluorescens
    58
    strain isolated from soil, Appl. Eviron. Microbiol., 64, 3123-3126,
    1997
    Paters K. E. and Moldown J. M., The biomarker Guide. Prentice
    Hall.EngleWood Cliffs, NJ ,363, 1993
    Paul E.A. and Clark F.E., Soil Microbiology and Biochemistry, second ed.
    Academic Press, USA., 1996
    Pedersen K. and Ekendahl S. , Distribution and activity of bacteria in
    deep granitic groundwaters of southeastern Sweden. Microb Ecol, 20,
    37-52, 1990
    Pedersen K. and Ekendahl S. , Assimilation of CO2 and introduced
    organic compounds by bacterial communities in groundwater from
    southeastern Sweden deep crystalline bedrock. Microb Ecol, 23,
    1-14, 1992
    Pedersen K., Arlinger J., Ekendahl, S. and Halbeck, L. , 16S rRNA gene
    diversity of attached and unattached bacteria in boreholes along the
    access tunnel of the spö hard rock laboratory, Sweden. FEMS
    Microbiol Ecol, 19, 249-262, 1996
    Petri R. and Imhoff, J. F., The relationship of nitrate reducing bacteria on
    the basis of narH gene sequences and comparison of narH and 16S
    rDNA based phylogeny. Syst Appl Microbiol, 23,47-57, 2000
    Petri R. and Imhoff, J. F., The relationship of nitrate reducing bacteria on
    the basis of narH gene sequences and comparison of narH and 16S
    rDNA based phylogeny. Syst Appl Microbiol, 23,47-57, 2000
    Pimik M. P., Atlas, R. M., and Bartha, R., Hydrocarcon Metabolism by
    Brevibacterium erythrogens : Normal and Branched Aalkanes.,
    J.Bacteriol., 119, 868-878, 1974
    Rainer U. M., Eva A., Walter M., Hans H. R., Anaerobic Naphthalene
    Degradation by a Sulfate-Reducing. Appl Environ Microbiol,
    64,2743-2747,2006
    Ran X.and Jeffrey P. O., Effect of Nutrient Amendments on Indigenous
    Hydrocarbon Biodegradation in Oil-Contaminated Beach
    59
    Sediments.J. Environ.Qual, 32,1234–1243 ,2003.
    Romy Chakraborty and John D. Coates,Hydroxylation and
    Carboxylation—Two Crucial Steps of Anaerobic Benzene
    Degradation by Dechloromonas Strain RCB. Appl Environ
    Microbiol, 71,5427-5432,2006
    Roselló-M. R, Amann R , The species concept for prokaryotes. FEMS
    Microbiol Rev, 25:39-67, 2001
    Sarah J. M., Stephen J. R.,Venosa, A. D., Davis, G. A., Chang, Y. j.,
    White, D. C., Microbial population changes during bioremediation
    of an experimental oil spil. Appl Environ Microbiol, 65 ,3566-3574,
    1999
    Salisbury M. H., Shinohara, M., Richter, C., Available from: Ocean
    Drilling Program. Proc Init Repts , 195, 1-46
    Song H. G., Xiaoping W., and Bartha R., “Bioremediation potential of
    terrestril fuel spills.”, Appl. Environ. Microbiol., 52, 652-656, 1990
    Stackebrandt E. , Unifying phylogeny and phenotypic properties. In
    Balows, A. et al., (eds) The Prokaryotes, A Handbook on the
    Biology of Bacteria: Ecophysiology, Isolation, Identification,
    Applications, 2nd-ed. New York: Springer,1992
    Teske A., C. Wawer, G. Muyzer, and N. B. Ramsing., Distribution of
    sulfate-reducing bacteria in a stratified fjord (Mariager Fjord,
    Denmark) as evaluated by most-probable-number counts and
    denaturing gradient gel electrophoresis of PCR-amplified ribosomal
    DNA fragments. Appl Environ Microbiol ,62, 1405-1415, 1996
    Thompson J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G.
    Higgins, The Clustal X windows interface: flexible strategies for
    multiple sequence alignment aided by quality analysis tools. Nucleic
    Acid Research, 24, 4876-4882, 1997
    Tyson R. V., Sedimentary Organic Matter. Organic Facies and
    Palynofacies. Chapman and Hall., 1995
    60
    Torsvik V., Goksøyr J., and Daae. F. L., High diversity in DNA of soil
    bacteria. Appl Environ Microbiol, 56, 782-787, 1990
    Verstraete W., Vanlooke R., deBorger R, and Verlinde A., Modelling of
    the breakdown and the mobilization of hydrocarbons in unsaturated
    soil layers, p. 98-112. In J. M. Sharpley and A. M. Kaplan (ed.),
    Proceedings of the Third Intemational Biodegradation Symposium.
    Applied Science Publishers, Ltd., 1976.
    Wodzinsky R.S., and LaRocca D.,Bacterial growth kinetics on
    diphenylmethane and naphthalene-heptamethylnonane. Appl.
    Environ. Microbiol. ,33,660-665, 1977
    Whyte L. G., Bourbonnie`re L., and Charles W. G., Biodegradation of
    Petroleum Hydrocarbons by Psychrotrophic Pseudomonas Strains
    Possessing Both Alkane (alk) and Naphthalene (nah) Catabolic
    Pathways, Appl Environ Microbiol, 3719–3723, 1997
    Woese C. , Bacterial evolution. Microbiol Rev, 51, 221-271, 1987
    ZoBell C. E.and Prokop J. F., Microbial oxidation of mineral oils in
    arataria Bay bottom deposits, Z. Allg. Mikrobiol. ,6,143-162. 1980.

    下載圖示 校內:2008-08-30公開
    校外:2008-08-30公開
    QR CODE