| 研究生: |
詹弘凭 Chan, Hung-Ping |
|---|---|
| 論文名稱: |
以高速schlieren顯影解析微槽內乙烯/氧氣預混焰加速及轉爆震波之動態 Analysis of flame acceleration and deflagration-to-detonation transition in narrow channels filled with ethylene/oxygen mixtures using high-speed schlieren visualization |
| 指導教授: |
吳明勳
Wu, Ming-Hsun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 高速schlieren顯影 、微槽 、預混焰加速 、爆震波轉變 |
| 外文關鍵詞: | High speed schlieren visualization, narrow channel, flame acceleration, detonation transition |
| 相關次數: | 點閱:113 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對微小尺度的爆震管內,乙烯/氧氣預混焰從點火到生成爆震波的過程,利用火焰螢光和schlieren顯影,首先針對化學當量的乙烯/氧氣預混氣體在1 × 1 mm2的方形微槽中之反應波與震波動態進行實驗解析。藉由此研究可以進一步探討反應波在如此狹小的空間中與震波之間的交互作用,結果成功利用此實驗方法觀察到過程中出現的流場特徵,包含:前導震波、斜震波、先驅震波、震波叢集和爆震波轉變,也探討了流場特徵對反應波傳遞速度的影響。
第二部分,進一步改變乙烯/氧氣的當量比,利用不同的當量比條件來觀察反應波加速和流場特徵的變化,結果發現在1 × 1 mm2的方形微槽中當量比為0.5的條件下,反應波沒有出現爆震波轉變的過程,而在成功形成爆震波的當量比條件下,以當量比1.3能最快形成前導震波與最後的爆震波轉變,而形成爆震波的時間趨勢為一U型曲線。第三部分,透過乙烯/氧氣在化學當量的條件下,利用不同的管徑尺寸來觀察反應波加速和流場特徵的變化,結果發現在管徑尺寸為0.6 × 0.6 mm2 的條件下,反應波沒有出現爆震波轉變的過程,除此之外反應波的加速隨著管徑的縮小而加快。
To investigate the flame acceleration process in narrow channels with ethylene/oxygen mixtures the high speed visualization systems were used. The chemiluminescence visualization recorded whole process including from the ignition to final steady detonation propagation. The schlieren visualization was used to observe the interaction between shock waves and reaction wave. First we found five different features within the flame acceleration to detonation transition process in 1×1 mm2 channel with stoichiometric condition. Respectively, leading shock, oblique shock, precursor shock, shock cluster, detonation transition. Second part is changing the equivalence ratio to observe the influence from different fuel and oxidizer concentration. We found that there is no detonation transition occurred when in 1×1 mm2 channel and the fastest to become detonation propagation is at he trend of DDT time and equivalence ratio is like a U curve. Final part is changing the channel width to analysis the channel size influence on flame acceleration process and the flow features with stoichiometric condition. The DDT time is reduced in smaller channel and there is no detonation transition in 0.6×0.6 mm2 channel.
[1] G. Ciccarelli and S. Dorofeev (2008), Flame acceleration and transition to detonation in ducts, Progress in Energy and Combustion Science, 34, 499-550.
[2] E.S. Oran and V.N. Gamezo (2007), Origins of deflagration-to-detonation transition in gas-phase combustion, Combustion and Flame, 148, 4-47.
[3] J.D. Ott, E.S. Oran, J.D. Anderson Jr (2003), A mechanism for flame acceleration in narrow tubes, AIAA Journal, 41(7), 1391-1396.
[4] V.N. Gamezo and E.S. Oran (2006), Flame acceleration in narrow Channels: applications for micropropulsion in low-gravity environments, AIAA Journal, 44(2), 329-336.
[5] V. Bychkov, A. Petchenko, V. Akkerman, L.E. Eriksson (2005), Theory and modeling of accelerating flames in tubes, Physical Review, 72, 046307.
[6] V. Bychkov, V. Akkerman, G. Fru, A. Petchenko, L.E. Eriksson (2007), Flame acceleration in the early stages of burning in tubes, Combustion and Flame, 150, 263-276.
[7] V. Bychkov, V. Akkerman, D.M. Valiev, C.K. Law (2010), Role of compressibility in moderating flame acceleration in tubes, Physical Review, 81, 026309.
[8] D.M. Valiev, V. Akkerman, M. Kuznetsov, L.E. Eriksson, C.K. Law (2013), Influence of gas compression on flame acceleration in the early stage of burning in tubes, Combustion and Flame, 160, 97-111.
[9] V. Akkerman, V. Bychkov, A. Petchenko, L.E. Eriksson (2006), Accelerating flames in cylindrical tubes with nonslip at the walls, Combustion and Flame, 145, 206-219.
[10] D.M. Valiev, V. Bychkov, V. Akkerman, L.E. Eriksson (2009), Different stages of flame acceleration from slow burning to Chapman-Jouguet deflagration, Physical Review, 80, 036317.
[11] D.M. Valiev, V. Bychkov, V. Akkerman, L.E. Eriksson, M. Marliund (2008), Heating of the fuel mixture due to viscous stress ahead of accelerating flames in deflagration-to-detonation transition, Physics Letters A, 372, 4850-4857.
[12] M. Kuznetsov, V. Alekseev, I. Matsukov, S. Dorofeev (2005), DDT in a smooth tube filled with a hydrogen–oxygen mixture, Shock Waves, 14, 205-215.
[13] D.A. Kessler, V.N. Gamezo, E.S. Oran (2010), Simulations of flame acceleration and deflagration-to-detonation transitions in methane-air systems, Combustion and Flame, 157, 2063-2077.
[14] M.H. Wu, M.P. Burke, S.F. Son, R.A. Yetter (2007), Flame acceleration and the transition to detonation of stoichiometric ethylene/oxygen in microscale tubes, Proceedings of the Combustion Institute, 31, 2429-2436.
[15] S. Yang, A. Saha, F. Wu, C.K. Law (2016), Morphology and self-acceleration of expanding laminar flames with flame-front cellular instabilities, Combustion and Flame, 171, 112-118.
[16] W. Han, Y. Gao, C.K. Law (2017), Flame acceleration and deflagration-to-detonation transition in micro- and macro-channels: an integrated mechanistic study, Combustion and Flame, 176, 285-298.
[17] D.M. Valiev, V. Bychkov, V. Akkerman, L.E. Eriksson, C.K. Law (2013), Quasi-steady stages in the process of premixed flame acceleration in narrow channels. Physics of Fluids, 25, 096101.
[18] I. Brailovsky and G. Sivashinsky (2000), Hydraulic resistance as a mechanism for deflagration-to-detonation transition, Combustion and Flame, 122, 492-499.
[19] L. Kagan and G. Sivashinsky (2016), Deflagration-to-detonation transition in narrow channels: hydraulic resistance versus flame folding, Combustion Theory and Modelling, 20, 798-811.
[20] A. Costa and G. Macedonio (2005), Viscous heating effects in fluids with temperature-dependent viscosity: triggering of secondary flows, J. Fluid Mech, 540, 21-38.
[21] P. Urtiew and A.K. Oppenheim (1966), Experimental observations of the transition to detonation in an explosive gas, Proc Roy Soc Lond Ser. 295, 13-28.
[22] M.A. Liberman, M. Kuznetsov, A. Ivanov, I. Matsukov (2009), Formation of the preheated zone ahead of a propagating flame and the mechanism underlying the deflagration-to-detonation transition, Physics Letters A, 373, 501-510.
[23] M.A. Liberman, M.F. Ivanov, A.D. Kiverin, M.S. Kuznetsov, A.A. Chukalovsky, T.V. Rakhimova (2010), Deflagration-to-detonation transition in highly reactive combustible mixtures, Acta Astronautica, 67, 688-701.
[24] M.F. Ivanov, A.D. Kiverin, M.A. Liberman (2011), Hydrogen-oxygen flame acceleration and transition to detonation in channels with no-slip walls for a detailed chemical reaction model, Physical Review, 83, 056313.
[25] M. Kuznetsov, M.A. Liberman, I. Matsukov (2010), Experimental study of the preheat zone formation and deflagration to detonation transition, Combustion Science and Technology, 182, 1628-1644.
[26] M.F. Ivanov, A.D. Kiverin, I.S. Yakovenko, M.A. Liberman (2013), Hydrogen–oxygen flame acceleration and deflagration-to-detonation transition in three-dimensional rectangular channels with no-slip walls, International Journal of Hydrogen Energy, 38, 16427-16440.
[27] E. Dzieminska and A.K. Hayashi (2013), Auto-ignition and DDT driven by shock wave - boundary layer interaction in oxyhydrogen mixture, International Journal of Hydrogen Energy, 38, 4185-4193.
[28] T. Machida, M. Asahara, A. Koichi, A.K. Hayashi, N. Tsuboi (2014), Three-dimensional simulation of deflagration-to-detonation transition with a detailed chemical reaction model, Combustion Science and Technology, 186, 1758-1773.
[29] L. Kagan and G. Sivashinsky (2010), On the transition from deflagration to detonation in narrow tubes, Flow Turbulence Combust, 84, 243-437.
[30] R.W. Houim, A. Ozgen, E.S. Oran (2016), The role of spontaneous waves in the deflagration-to-detonation transition in submillimetre channels, Combustion Theory and Modelling, 20, 1068-1087.
[31] V.N. Gamezoa, E.S. Oran, A.M. Khokhlov (2005), Three-dimensional reactive shock bifurcations, Proceedings of the Combustion Institute, 30, 1841-1847.
[32] M.H. Wu and W.C. Kuo (2013), Accelerative expansion and DDT of stoichiometric ethylene/oxygen flame rings in micro-gaps, Proceedings of the Combustion Institute, 34, 2017-2024.
[33] 郭維君,微槽內爆震焰通過二維突擴之傳遞特性,國立成功大學碩士論文,2011。
[34] 王俊凱,預混焰於微管槽內加速機制之研究,國立成功大學碩士論文,2010。
[35] 邱柏淵,微槽內爆震焰產生過程中震波與反應波之交互作用,國立成功大學碩士論文,2012。
[36] Z.E. Chen and M.H. Wu, Charaterization of pressure evolutions during flame acceleration and DDT in thin channel, The 10th Asia-Pacific Conference on Combustion, Beijing, China, 2015.
[37] M.H. Wu and C.Y. Wang (2011), Reaction propagation modes in millimeter-scale tubes for ethylene/oxygen mixtures, Proceedings of the Combustion Institute, 33, 2287-2293.
[38] H.N. Presles, D. Desbordes, M. Guirard, C. Guerraud (1996), Gaseous nitromethane and nitromethane-oxygen mixtures: a new detonation structure, Shock Waves, 6, 111-114.
[39] S. Kitano, M. Fukao, A. Susa, N. Tsuboi, A.K. Hayashi, M. Koshi (2009), Spinning detonation and velocity deficit in small diameter tubes, Proceedings of the Combustion Institute, 32, 2355-2362.
[40] G.B. Goodwin, R.W. Houim, E.S. Oran (2016), Effect of decreasing blockage ratio on DDT in small channels with obstacles, Combustion and Flame, 173, 16-26.
[41] V.N. Gamezo, T. Ogawa, E.S. Oran (2008), Flame acceleration and DDT in channels with obstacles: effect of obstacle spacing, Combustion and Flame, 155, 302-315.
[42] D. Valiev, V. Bychkov, V. Akkerman, C.K. Law, L.E. Eriksson (2010), Flame acceleration in channels with obstacles in the deflagration-to-detonation transition, Combustion and Flame, 157, 1012-1021.
[43] M. Cross and G. Ciccarelli (2015), DDT and detonation propagation limits in an obstacle filled tube, Journal of Loss Prevention in the Process Industries, 36, 380-386.
[44] M.H. Wu and T.H. Lu (2012), Development of a chemical microthruster based on pulsed detonation, Journal of Micromechanics and Microengineering, 22, 105040.
[45] 陳咨爾,無閥式微型脈衝爆震引擎進氣流道內之氣動力動態,國立成功大學碩士論文,2015。
[46] 鄭佳和,燃料進氣角度對無閥式微脈衝爆震推進器操作之影響,國立成功大學碩士論文,2014。
校內:2018-09-01公開