簡易檢索 / 詳目顯示

研究生: 郭勇哲
Kuo, Yung-Che
論文名稱: 哺乳動物精子發育過程中BRDT基因功能之探討
Characterization of the Function of Bromodomain Testis-Specific Gene (BRDT)
指導教授: 郭保麟
Kuo, Pao-Lin
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 91
中文關鍵詞: 男性不孕症精子游動力染色絲重整作用精子形成睪丸專一性溴區段基因
外文關鍵詞: BRDT, male infertility, sperm motility, spermiogenesis, chromatin reorganization
相關次數: 點閱:137下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前約有13% ~ 18%的夫妻被不孕症所困擾,而在這些不孕症患者中,約有一半的病例是由男方的因素所引起。造成男性不孕症的因素目前了解的並不多,主要的異常大部分是發生在精細胞形成過程與精子形成過程。精細胞形成與精子形成是個極其複雜之發育過程,此發育過程是由雙套的生殖細胞經由高度型態上的分化後而形成單套的成熟精子,而這個造精過程也必須要有一些在特定時期才表現的基因參與其中才能完成。
    為了找出涉及人類造精過程的眾多基因,我們由造精功能缺陷的病人身上取得一些睪丸組織,再利用這些睪丸組織製造出c-DNA微矩陣晶片,並且分析其基因表現情況。我們發現有一些基因在這些不孕的病人身上其表現量是顯著性的減少。而其中一個即是睪丸專一性溴區段基因,簡稱為BRDT。BRDT蛋白擁有二個bromodomain、一個ET domain和一段PEST序列,且隸屬於BET家族的其中一員。我們初步發現Brdt專一性地表現在睪丸中,再進一步實驗則發現Brdt專一性地表現在生殖細胞中,且其mRNA從粗絲期精母細胞開始被轉錄出來並一直留存在整個精子形成過程中。然而,Brdt蛋白卻表現在較為後期的圓形精細胞到成熟的精子,這種表現情況使我們認為BRDT在精子形成過程中可能參與了某些基因的發育調控。
    在精細胞完成減數分裂後之成熟作用而形成精子的這一段期間,染色絲結構會歷經重整作用,此重整作用會使組織蛋白被過渡蛋白1和過渡蛋白2置換掉,接著2種過渡蛋白又會接續被魚精蛋白1和魚精蛋白2所取代。而在早期長形精細胞內,當組織蛋白要被過渡蛋白替換掉的前一刻,組織蛋白會呈現廣範圍的高度乙醯基化,且我們也發現睪丸內的Brdt對於高度乙醯基化的組織蛋白4會產生一些交互作用,另外BRDT在游動力差的人類精子中其表現情況也會下降。因此,我們推論在精子形成過程中,Brdt和高度乙醯基化的組織蛋白之交互作用會調解染色絲的重整作用,若改變此交互作用有可能造成僅有少量的魚精蛋白併入到成熟精子中的染色絲而導致精子的品質變差,再進一步造成受孕能力低弱。我們的研究將會對人類精子發育過程的錯誤提供更深入的了解。

    It is estimated that 13-18% of couples are infertile and male factors account for about half of the cases. The causes of male infertility are largely unknown. Of male-factor infertility, defects in spermatogenesis or spermiogenesis account for the majority of cases. Spermatogenesis and spermiogenesis are complex developmental processes. The development of diploid germ cells to morphologically highly differentiated haploid spermatozoa requires stages–specific expression of genes involved in spermatogenesis.
    To identify genes which are involved in human spermatogenesis, we studied global gene expression patterns in testicular tissues of men with spermatogenic defect by c-DNA microarrays. We found some genes are significantly down-regulated in infertile men. One of these genes was bromodomain testis-specific gene (BRDT). The BRDT is a member of bromodomain protein with extra terminal domain (BET) family. The BRDT encode protein with a PEST sequence, one ET domain and two copies of a bromodomain. We found that Brdt is exclusively expressed in the testis. Further studies showed that Brdt was exclusively expressed in germ cells. The Brdt transcript started to be detectable in pachytene spermatocytes and persisted throughout spermiogenesis stage. However, Brdt protein is expressed from round spermatid to spermatozoa. The expression pattern suggests that BRDT may be involved in developmental regulation of genes during spermiogenesis.
    During the post-meiotic maturation of spermatids into sperm, the chromatin structure undergoes re-organization then core histones are replaced by transition protein-1 and -2, followed by protamine-1 and protamine-2. Immediately before core histones are displacement by transition proteins, the histones are shown to be globally hyperacetylated in early elongating spermatids. We found Brdt interacts with hyperacetylation histone H4 in vivo. Meanwhile, the protein level of Brdt is reduced in pool-motility sperm. It is proposed that interaction between Brdt and hyperacetylated histone may mediate nuclear reorganization in spermiogenesis. Alteration of this interaction may lead to reduced incorporation of protamines into sperm genome and poor-quality sperm. Our study provides further insight into potential developmental errors which may occur during human spermiogenesis.

    ABSTRACT IN CHINESE------------------------------------------------------i ABSTRACT IN ENGLISH------------------------------------------------------iii ACKNOWLEDGEMENT----------------------------------------------------------v TABLE OF CONTENTS--------------------------------------------------------vii LIST OF TABLES-----------------------------------------------------------xii LIST OF FIGURES----------------------------------------------------------xiii LIST OF ABBREVIATIONS----------------------------------------------------xv 1 INTRODUCTION---------------------------------------------------------1 1-1 Infertility-----------------------------------------------------1 1-2 Causes of male-factor infertility-------------------------------2 1-3 Process of spermatogenesis--------------------------------------5 1-3-1 Endocrinology------------------------------------------------5 1-3-2 The effect of gonadotropic hormones on testis----------------6 1-3-3 Spermatogenesis----------------------------------------------7 1-4 Genes involve in spermatogenesis--------------------------------9 1-5 BRDT gene------------------------------------------------------10 1-6 Preview of BRDT function---------------------------------------10 1-7 Objectives of this study---------------------------------------11 2 MATERIALS AND METHODS-----------------------------------------------13 2-1 Patients-------------------------------------------------------13 2-2 Testicular samples---------------------------------------------13 2-3 Total RNA isolation--------------------------------------------14 2-3-1 Materials---------------------------------------------------14 2-3-2 Method------------------------------------------------------14 2-4 Reverse Transcriptase-Polymerase Chain Reaction, RT-PCR---------16 2-4-1 Materials---------------------------------------------------16 2-4-2 Method------------------------------------------------------17 2-5 Real Time-PCR---------------------------------------------------18 2-5-1 Materials---------------------------------------------------18 2-5-2 Method------------------------------------------------------18 2-6 Spermatozoa samples and protein extraction----------------------20 2-6-1 Materials---------------------------------------------------20 2-6-2 Method------------------------------------------------------20 2-7 Spermatozoa total RNA extraction by TRIzol----------------------21 2-7-1 Materials---------------------------------------------------21 2-7-2 Method------------------------------------------------------21 2-8 Semi-quantitative RT-PCR----------------------------------------22 2-8-1 Materials---------------------------------------------------22 2-8-2 Method------------------------------------------------------22 2-9 Immunohistochemistry staining, IHC------------------------------24 2-9-1 Materials---------------------------------------------------24 2-9-2 Method------------------------------------------------------24 2-10 Immunofluorescence assay, IFA----------------------------------27 2-10-1 Materials--------------------------------------------------27 2-10-2 Method-----------------------------------------------------27 2-11 Total protein extraction---------------------------------------29 2-11-1 Materials--------------------------------------------------29 2-11-2 Method-----------------------------------------------------29 2-12 Western Blot Analysis------------------------------------------30 2-12-1 Materials--------------------------------------------------30 2-12-2 Method-----------------------------------------------------31 2-13 Immunoprecipitation analysis-----------------------------------32 2-13-1 Materials--------------------------------------------------32 2-13-2 Method-----------------------------------------------------32 2-14 SDS-PAGE gel silver staining-----------------------------------34 2-14-1 Materials--------------------------------------------------34 2-14-2 Method-----------------------------------------------------34 2-15 Phylogenetic tree analysis-------------------------------------35 2-15-1 Materials--------------------------------------------------35 2-15-2 Method-----------------------------------------------------35 2-16 Statistical analysis-------------------------------------------36 2-16-1 Materials--------------------------------------------------36 2-16-2 Method-----------------------------------------------------36 3 RESULT--------------------------------------------------------------38 3-1 Down-regulation of BRDT gene in infertile men-------------------38 3-2 Expression pattern of BET family in the mouse testis------------38 3-3 Brdt was exclusively expressed in mouse and human germ cells----39 3-4 Mouse Brdt starts to express from pachytene spermatocytesto mature spermatozoa----------------------------------------------41 3-5 Identification of interaction proteins of BRDT by immunoprecipitation---------------------------------------------42 3-6 The Brdt protein can interact with hyperacetylation Histone H4 in vivo---------------------------------------------------------42 3-7 The expression of human BRDT protein was significantly decreased in the poor-motility-sperm----------------------------43 4 DISCUSSION----------------------------------------------------------45 4-1 The role of BET family in spermatogenesis----------------------45 4-2 The Brdt protein binds to hyperacetylated histone H4 in vitro and in vivo----------------------------------------------------46 4-3 Protamine and Transition protein in spermiogenesis-------------47 4-4 Histone hyperacetylation coincides with replacement of core histones by Transitional proteins------------------------------49 4-5 A working model of Brdt function-------------------------------50 REFERENCES--------------------------------------------------------------53 FIGURE------------------------------------------------------------------64 TABLE-------------------------------------------------------------------89 CURRICULUM VITAE--------------------------------------------------------91

    宋永魁:不孕症概論。曾啟瑞,楊友仕,宋永魁,李茂盛,張明揚 編。不孕症及生殖內分泌學。合記圖書出版社。台北市;p127-138 (民88)。

    荒木重雄:彩色圖解不孕症治療。郭宗正 譯。長年出版社。高雄市;p9-28 (1998)。

    陳芳萍:男性不孕的病因與診斷。曾啟瑞,楊友仕,宋永魁,李茂盛,張明揚 編。不孕症及生殖內分泌學。合記圖書出版社。台北市;p205-212 (民88)。

    Adham IM, Nayernia K, Burkhardt-Gottges E, Topaloglu O, Dixkens C, Holstein AF, Engel W. Teratozoospermia in mice lacking the transition protein 2 (Tnp2). Mol Hum Reprod. 7(6):513-520 (2001).

    Agarwal A, Said TM. Oxidative stress, DNA damage and apoptosis in male infertility: a clinical approach. BJU Int. 95(4):503-507 (2005).

    Aoki VW, Liu L, Carrell DT. Identification and evaluation of a novel sperm protamine abnormality in a population of infertile males. Hum Reprod. 20(5):1298-1306 (2005).

    Baker J, Hardy MP, Zhou J, Bondy C, Lupu F, Bellve AR, Efstratiadis A. Effects of an Igf1 gene null mutation on mouse reproduction. Mol Endocrinol. 10(7):903-918 (1996).

    Baarends WM, Hoogerbrugge JW, Roest HP, Ooms M, Vreeburg J, Hoeijmakers JH, Grootegoed JA. Histone ubiquitination and chromatin remodeling in mouse spermatogenesis. Dev Biol. 207(2):322-333 (1999).

    Boyer A, Lussier JG, Sinclair AH, McClive PJ, Silversides DW. Pre-sertoli specific gene expression profiling reveals differential expression of Ppt1 and Brd3 genes within the mouse genital ridge at the time of sex determination. Biol Reprod. 71(3):820-827 (2004).

    Bradford, MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye-binding. Anal. Biochem. 72:248-254 (1976).

    Brinkworth MH. Paternal transmission of genetic damage: findings in animals and humans. Int J Androl. 23(3):123-135 (2000).

    Crowley TE, Kaine EM, Yoshida M, Nandi A, Wolgemuth DJ. Reproductive cycle regulation of nuclear import, euchromatic localization, and association with components of Pol II mediator of a mammalian double-bromodomain protein. Mol Endocrinol. 16(8):1727-1737 (2002).

    Cho C, Willis WD, Goulding EH, Jung-Ha H, Choi YC, Hecht NB, Eddy EM. Haploinsufficiency of protamine-1 or -2 causes infertility in mice. Nat Genet. 28(1):82-86 (2001).

    Cho C, Jung-Ha H, Willis WD, Goulding EH, Stein P, Xu Z, Schultz RM, Hecht NB, Eddy EM. Protamine 2 deficiency leads to sperm DNA damage and embryo death in mice. Biol Reprod. 69(1):211-217 (2003).

    Christensen GL, Carrell DT. Animal models of genetic causes of male infertility. Asian J Androl. 4(3):213-219 (2002).

    de Kretser DM, Burger HG. The Y chromosome and spermatogenesis.
    N Engl J Med. 336(8):576-578 (1997).

    de Yebra L, Ballesca JL, Vanrell JA, Bassas L, Oliva R. Complete selective
    absence of protamine P2 in humans. J Biol Chem. 268(14):10553-10557 (1993).
    Denis GV, Vaziri C, Guo N, Faller DV. RING3 kinase transactivates promoters of cell cycle regulatory genes through E2F. Cell Growth Differ. 11(8):417-424 (2000).

    Edelmann W, Cohen PE, Kane M, Lau K, Morrow B, Bennett S, Umar A, Kunkel T, Cattoretti G, Chaganti R, Pollard JW, Kolodner RD, Kucherlapati R. Meiotic pachytene arrest in MLH1-deficient mice. Cell. 85(7):1125-1134 (1996).

    Faure AK, Pivot-Pajot C, Kerjean A, Hazzouri M, Pelletier R, Peoc'h M, Sele B, Khochbin S, Rousseaux S. Misregulation of histone acetylation in Sertoli cell-only syndrome and testicular cancer. Mol Hum Reprod. 9(12):757-763 (2003).

    Gabriel-Robez O, Ratomponirina C, Dutrillaux B, Carre-Pigeon F, Rumpler Y. Meiotic association between the XY chromosomes and the autosomal quadrivalent of a reciprocal translocation in two infertile men, 46,XY,t(19;22) and 46,XY,t(17;21). Cytogenet Cell Genet. 43(3-4):154-160 (1986).

    Gatewood JM, Cook GR, Balhorn R, Bradbury EM, Schmid CW. Sequence- specific packaging of DNA in human sperm chromatin. Science. 236(4804):962-964 (1987).

    Gatewood JM, Schroth GP, Schmid CW, Bradbury EM. Zinc-induced secondary structure transitions in human sperm protamines. J Biol Chem. 265(33):20667-20672 (1990).

    Govin J, Caron C, Lestrat C, Rousseaux S, Khochbin S. The role of histones in chromatin remodelling during mammalian spermiogenesis. Eur J Biochem. 271(17):3459-3469 (2004).

    Griffin DK, Finch KA. The genetic and cytogenetic basis of male infertility. Hum Fertil (Camb). 8(1):19-26 (2005).

    Guo R, Yu Z, Guan J, Ge Y, Ma J, Li S, Wang S, Xue S, Han D. Stage-specific and tissue-specific expression characteristics of differentially expressed genes during mouse spermatogenesis. Mol Reprod Dev. 67(3):264-72 (2004).

    Gustavson KH, Gamstorp I, Meurling S. Bilateral teratoma of testis in two brothers with 47,XXY Klinefelter's syndrome. Clin Genet. 8(1):5-10 (1975).

    Hazzouri M, Pivot-Pajot C, Faure AK, Usson Y, Pelletier R, Sele B, Khochbin S, Rousseaux S. Regulated hyperacetylation of core histones during mouse spermatogenesis: involvement of histone deacetylases. Eur J Cell Biol. 79(12):950-960 (2000).

    Ishii H, Mimori K, Mori M, Vecchione A. Differentially expressed genes in endothelial differentiation. DNA Cell Biol. 24(7):432-437 (2005).

    Johnson MH, Everitt BJ. Essential Reproduction. 5th ed. Blackwell Science Ltd, Oxford. pp. 53-68 (2000).

    Jones MH, Numata M, Shimane M. Identification and characterization of BRDT: A testis-specific gene related to the bromodomain genes RING3 and Drosophila fsh. Genomics. 45(3):529-534 (1997).

    Kimmins S, Sassone-Corsi P. Chromatin remodelling and epigenetic features of germ cells. Nature. 434(7033):583-589 (2005).

    Knudson CM, Tung KS, Tourtellotte WG, Brown GA, Korsmeyer SJ. Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science. 270(5233):96-99 (1995).

    Krege JH, John SW, Langenbach LL, Hodgin JB, Hagaman JR, Bachman ES, Jennette JC, O'Brien DA, Smithies O. Male-female differences in fertility and blood pressure in ACE-deficient mice. Nature. 375(6527):146-148 (1995).

    Larry IL, Stuart S. Infertility in the male. Third edition. Mosby-Year
    Book,Inc., St. Louis. pp. 173-174 (1997).

    Leff SE, Brannan CI, Reed ML, Ozcelik T, Francke U, Copeland NG, Jenkins NA. Maternal imprinting of the mouse Snrpn gene and conserved linkage homology with the human Prader-Willi syndrome region. Nat Genet. 2(4):259-264 (1992).

    Lin YM, Lin YH, Teng YN, Hsu CC, Shinn-Nan Lin J, Kuo PL. Gene-based screening for Y chromosome deletions in Taiwanese men presenting with spermatogenic failure. Fertil Steril. 77(5):897-903 (2002).

    Martins RP, Krawetz SA. RNA in human sperm. Asian J Androl. 7(2):115-120 (2005).

    Matangkasombut O, Buratowski RM, Swilling NW, Buratowski S. Bromodomain factor 1 corresponds to a missing piece of yeast TFIID. Genes Dev. 14(8):951-962 (2000).

    Matzuk MM, Lamb DJ. Genetic dissection of mammalian fertility pathways. Nat Cell Biol. 4 Suppl:s41-49 (2002).

    Mauduit C, Hamamah S, Benahmed M. Stem cell factor/c-kit system in spermatogenesis. Hum Reprod Update. 5(5):535-545 (1999).

    Michael HR, Edward JR, Lynn JR. Histology: A text and atlas. 2nd ed. Williams and Wilkins, Maryland. pp. 617 (1989).

    Mitchell V, Steger K, Marchetti C, Herbaut JC, Devos P, Rigot JM. Cellular expression of protamine 1 and 2 transcripts in testicular spermatids from azoospermic men submitted to TESE-ICSI. Mol Hum Reprod. 11(5):373-379 (2005).

    Nayernia K, Li M, Jaroszynski L, Khusainov R, Wulf G, Schwandt I, Korabiowska
    M, Michelmann HW, Meinhardt A, Engel W. Stem cell based therapeutical approach of male infertility by teratocarcinoma derived germ cells. Hum Mol Genet. 13(14):1451-1460 (2004).

    Nussey SS, Whitehead SA. Endocrinology: An Integrated Approach. BIOS Scientific Publishers Ltd, Oxford. (2001).

    O'Donnell L, McLachlan RI, Wreford NG, Robertson DM. Testosterone promotes the conversion of round spermatids between stages VII and VIII of the rat spermatogenic cycle. Endocrinology. 135(6):2608-2614 (1994).

    Oliva R, Bazett-Jones D, Mezquita C, Dixon GH. Factors affecting nucleosome disassembly by protamines in vitro. Histone hyperacetylation and chromatin structure, time dependence, and the size of the sperm nuclear proteins. J Biol Chem. 262(35):17016-17025 (1987).

    Osada N, Hida M, Kusuda J, Tanuma R, Hirata M, Suto Y, Hirai M, Terao K, Sugano S, Hashimoto K. Cynomolgus monkey testicular cDNAs for discovery of novel human genes in the human genome sequence. BMC Genomics. 3(1):36 (2002).

    Pang AL, Taylor HC, Johnson W, Alexander S, Chen Y, Su YA, Li X, Ravindranath N, Dym M, Rennert OM, Chan WY. Identification of differentially expressed genes in mouse spermatogenesis. J Androl. 24(6):899-911 (2003).

    Parks JE, Lee DR, Huang S, Kaproth MT. Prospects for spermatogenesis in vitro. Theriogenology. 59(1):73-86 (2003).

    Pivot-Pajot C, Caron C, Govin J, Vion A, Rousseaux S, Khochbin S. Acetylation-dependent chromatin reorganization by BRDT, a testis-specific bromodomain-containing protein. Mol Cell Biol. 23(15):5354-5365 (2003).

    Rapley EA, Crockford GP, Teare D, Biggs P, Seal S, Barfoot R, Edwards S, Hamoudi R, Heimdal K, Fossa SD, Tucker K, Donald J, Collins F, Friedlander M, Hogg D, Goss P, Heidenreich A, Ormiston W, Daly PA, Forman D, Oliver TD, Leahy M, Huddart R, Cooper CS, Bodmer JG, Easton DF, Stratton MR, Bishop DT. Localization to Xq27 of a susceptibility gene for testicular germ-cell tumours. Nat Genet. 24(2):197-200 (2000).

    Rousseaux S, Caron C, Govin J, Lestrat C, Faure AK, Khochbin S. Establishment of male-specific epigenetic information. Gene. 345(2):139-153 (2005).

    Russell LD, Ettlin RA, Sinha Hikim AP, Clegg ED. Histological and Histopathological: evaluation of the testis. 1st ed. Cache River Press, St. Louis. pp. 1-58 (1990).

    Russell LD, Griswold MD. The Sertoli cell. Cache River Press, Clearwater, FL. (1993).

    Schultz N, Hamra FK, Garbers DL. A multitude of genes expressed solely in meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets. Proc Natl Acad Sci USA. 100(21):12201-12206 (2003).

    Schweiger MR, You J, Howley PM. Bromodomain protein 4 mediates the papillomavirus E2 transcriptional activation function. J Virol. 80(9):4276-4285 (2006).

    Sha J, Zhou Z, Li J, Yin L, Yang H, Hu G, Luo M, Chan HC, Zhou K. Identification of testis development and spermatogenesis-related genes in human and mouse testes using cDNA arrays. Mol Hum Reprod. 8(6):511-517 (2002).

    Shang E, Salazar G, Crowley TE, Wang X, Lopez RA, Wang X, Wolgemuth DJ. Identification of unique, differentiation stage-specific patterns of expression of the bromodomain-containing genes Brd2, Brd3, Brd4, and Brdt in the mouse testis. Gene Expr Patterns. 4(5):513-519 (2004).

    Simoni M, Weinbauer GF, Gromoll J, Nieschlag E. Role of FSH in male gonadal function. Ann Endocrinol (Paris). 60(2):102-106 (1999).

    Sinha A, Faller DV, Denis GV. Bromodomain analysis of Brd2-dependent transcriptional activation of cyclin A. Biochem J. 387(Pt 1):257-269 (2005).

    Taniguchi Y, Matsuzaka Y, Fujimoto H, Miyado K, Kohda A, Okumura K, Kimura M, Inoko H. Nucleotide sequence of the ring3 gene in the class II region of the mouse MHC and its abundant expression in testicular germ cells. Genomics. 51(1):114-123 (1998).

    Toscani A, Mettus RV, Coupland R, Simpkins H, Litvin J, Orth J, Hatton KS, Reddy EP. Arrest of spermatogenesis and defective breast development in mice lacking A-myb. Nature. 386(6626):713-717 (1997).

    Tuerlings JH, Kremer JA, Meuleman EJ. The practical application of genetics in
    the male infertility clinic. J Androl. 18(6):576-581 (1997).

    Vander AJ, Sherman JH, Luciano DS. Human Physiology, 6th ed. Trans. 王文憲,張
    文正。合記圖書出版社,台北市。pp. 341-380 (1994).

    World Health Organization. WHO Laboratory Manual for Examination of Human Semen. Cambridge University Press, Cambridge. (1999).

    Yan W, Rajkovic A, Viveiros MM, Burns KH, Eppig JJ, Matzuk MM. Identification of Gasz, an evolutionarily conserved gene expressed exclusively in germ cells and encoding a protein with four ankyrin repeats, a sterile-alpha motif, and a basic leucine zipper. Mol Endocrinol. 16(6):1168-1184 (2002).

    Yan W, Ma L, Burns KH, Matzuk MM. HILS1 is a spermatid-specific linker histone H1-like protein implicated in chromatin remodeling during mammalian spermatogenesis. 100(18):10546-10551 (2003).

    Yang Z, Yik JH, Chen R, He N, Jang MK, Ozato K, Zhou Q. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol Cell. 19(4):535-545 (2005).

    Zeng L, Zhou MM. Bromodomain: an acetyl-lysine binding domain. FEBS Lett. 513(1):124-128 (2002).

    Zhao M, Shirley CR, Yu YE, Mohapatra B, Zhang Y, Unni E, Deng JM, Arango NA, Terry NH, Weil MM, Russell LD, Behringer RR, Meistrich ML. Targeted disruption of the transition protein 2 gene affects sperm chromatin structure and reduces fertility in mice. Mol Cell Biol. 21(21):7243-7255 (2001).

    Zhao M, Shirley CR, Hayashi S, Marcon L, Mohapatra B, Suganuma R, Behringer RR, Boissonneault G, Yanagimachi R, Meistrich ML. Transition nuclear proteins are required for normal chromatin condensation and functional sperm development. Genesis. 38(4):200-213 (2004).

    Zheng Y, Yuan W, Zhou Z, Xu M, Sha JH. Molecular cloning and expression of a novel alternative splice variant of BRDT gene. Int J Mol Med. 15(2):315-321 (2005).

    Zirkin BR. Spermatogenesis: its regulation by testosterone and FSH. Semin Cell Dev Biol. 9(4):417-421 (1998).

    下載圖示 校內:2008-08-09公開
    校外:2008-08-09公開
    QR CODE