簡易檢索 / 詳目顯示

研究生: 洪惠淳
Hong, Hui-Chun
論文名稱: 秦皮苷在大白鼠體內藥物動力學與交互作用
Pharmacokinetics and drug interactions of fraxin in rats
指導教授: 周辰熹
Chou, Chen-Hsi
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床藥學與藥物科技研究所
Institute of Clinical Pharmacy and Pharmaceutical sciences
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 96
中文關鍵詞: 秦皮苷多酚類化合物第二相反應葡萄糖醛酸反應valproic acid
外文關鍵詞: fraxin, polyphenols, phase II reaction, glucuronidation, valproic acid
相關次數: 點閱:108下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 簡介:秦皮(Cortex fraxini)為常見的傳統中藥材,取自於木犀科白臘樹的莖皮,目前於台灣已有秦皮相關的保健食品、科學中藥以及複方可供使用,多用來治療痛風、關節炎、腹瀉和細菌性痢疾。秦皮苷(fraxin)為秦皮中的重要有效成分之一,於體外試驗證實具有抗發炎、抗氧化及清除自由基等的作用;於體內試驗,在誘導為高尿酸的大鼠實驗中則發現其具有促進尿酸排除以及保護腎臟的效果。口服秦皮苷後,其體內代謝會經由腸胃道的菌叢進行水解切除glycoside後,形成主要代謝物秦皮素(fraxetin),秦皮素後續經第二相反應(phase II reaction)生成葡萄醣醛酸及硫酸的結合態代謝物fraxetin glucuronide與fraxetin sulfate,再由尿液排除體外;其中,葡萄醣醛酸反應為臨床藥品常見的代謝途徑,重要的參與酵素為尿嘧啶雙磷酸轉移酵素(UGTs)。UGT酵素的代謝是造成許多天然多酚類化合物之生體可用率低下的主因,也是導致食品與藥物交互作用的重要因素。因此同為多酚類化合物的秦皮苷及其經UGT酵素代謝後的相關產物在體內的藥物動力學值得進一步研究。
    目的:本研究目的在利用大白鼠動物實驗模式來探討秦皮苷於大白鼠體內動態以及它和臨床使用藥品間的交互作用。為此也將開發靈敏的高效液相層析法,同時定量秦皮苷與其主要代謝物。
    方法:在控制組實驗中,分別以靜脈注射與口服投藥方式給予不同劑量的秦皮苷與秦皮素以研究其藥物動態。在交互作用試驗中先給予秦皮素接著給予valproate,採集血液檢品並分析valproic acid、秦皮素與其結合態代謝物,進一步探討其交互作用。
    結果:實驗結果已成功開發靈敏且能夠同時分析動物體液中的秦皮苷與其結合態代謝物的液相層析方法且實際應用至大白鼠體內動力學研究。大鼠口服投予秦皮苷或靜脈投予秦皮素後,在血漿檢品層析圖譜上可明顯觀察到疑似代謝產物的層析波峰,猜測可能是fraxetin glucuronide與fraxetin sulfate等相關代謝物。靜脈投予秦皮苷則沒有觀察到相關代謝物生成;口服投予秦皮苷或秦皮素後,皆可觀察到fraxetin glucuronide與fraxetin sulfate等代謝物,秦皮苷與秦皮素具二室的分室模式特性,秦皮苷生體可用率約只有0.8 %,秦皮素約82 %。與valproic acid 交互作用結果顯示,靜脈給藥併用秦皮素與valproate後,兩者血中濃度皆有上升情形且排除速率減緩;口服給藥併用秦皮素與valproate,兩者的血中濃度皆有下降情形,且秦皮素代謝物在給藥後30分鐘內亦觀察到減少現象。
    結論:秦皮苷以口服投予後,會在大鼠體內快速且大量代謝成秦皮素、fraxetin glucuronide與fraxetin sulfate,而以靜脈注射投予的話則沒有觀察到相關代謝物的生成,此現象可能是和秦皮苷上的glycoside官能基有關。併用同為UGTs受質的秦皮素與valproic acid在大白鼠體內藥物交互作用之研究中,靜脈給藥的實驗組可以看到valproic acid曲線下面積增加為原本的1.5倍,顯示valproic acid在大鼠體內的排除受到影響,而這樣的交互作用可能會造成valproic acid持續蓄積在體內。口服給藥的實驗組則觀察到valproic acid的吸收顯著受到秦皮素的影響而減少,而valproic acid的排除則沒有改變。

    關鍵詞:
    秦皮苷,多酚類化合物,第二相反應,葡萄糖醛酸反應,valproic acid

    Pharmacokinetics and drug interactions of fraxin in rats
    Hui-Chun Hong
    Chen-Hsi Chou
    Institute of Clinical Pharmacy, Medical College, National Cheng Kung University
    Abstract
    Background. Cortex fraxini (named Qinpi in Chinese) is the dried bark of plants from the Oleaceae family, including Fraxinus rhynchophylla, F. chinensis, F. szaboana and F. stylosa. Cortex fraxini is commonly used as Chinese herbal drug, proven to be effective in the treatment of diarrhea and dysentery of intense heat type. Fraxin (7-hydroxy-6-methoxycoumarin 8-glucoside), a structurally derivative of coumarin glucoside, is one of the important bioactive components in Cortex fraxini. Fraxin is known to be responsible for the diuretic, anti-inflammatory, anti-oxidant, and anti-hyperuricemic effects. Following oral administration fraxin is extensively metabolized to the aglycone fraxetin (7,8-Dihydroxy-6-methoxycoumarin), which is also an effective constituent of Cortex fraxini and can be extensively metabolized to glucuronides by uridine diphosphate glucuronosyl transferases (UGTs). Glucuronidation mediated by uridine diphosphate glucuronosyl transferases (UGTs) is a common phase II metabolic pathway for various prescribed drugs. In view of these interactions, drugs with narrow therapeutic margins such as valproic acid should be carefully considered with respect to fraxin. Quantification and pharmacokinetics studies on constituents of Traditional Chinese Medicine in plasma are required to offer useful information in clinical application. Although fraxin has been used clinically for many years, its pharmacokinetic property still remains unknown so far due to the lack of quantification methods. Therefore, it is necessary to develop a suitable bioanalytical method for the determination of fraxin in plasma.
    Purpose. The aim of this study is to investigate the pharmacokinetics and drug interactions of fraxin in male Sprague-Dawley rats. To characterize the pharmacokinetic properties of fraxin, it is very necessary to develop an accurate and selective bioanalytical method for the determination of fraxin in rat plasma.
    Methods. Two sensitive high-performance liquid chromatography (HPLC) methods, one for simultaneous determination of fraxin and its conjugate metabolites using ferulic acid ((2E)-3-(4-hydroxy-3-methoxyphenyl) prop-2-enoic acid) as an internal standard, the other for quantification of fraxetin using piperonyl alcohol (2H-1,3-benzodioxol-5-ylmethanol) as an internal standard in rat plasma were developed. The analytes and internal standards were separated on Thermo Hypurity C18 column (4.6 mm × 250 mm, 5 μm) and protected by an ODS guard colum (10 mm × 4 mm, 5 μm). Fluorescence and ultraviolet detectors were used in this study. Since fraxin has fluorophoric properties, fluorescent detection (FD) was expected to provide an inexpensive, sensitive, and specific detection of fraxin in biological samples. The two methods have been fully validated in terms of selectivity, linearity, accuracy, precision, stability, matrix effect and recovery. The Sprague-Dawley rats (8 weeks; body weight: 230~250 g) received fraxin and fraxetin intravenously (iv) and orally at the dose level of 5 and 20 mg per kilogram, respectively. Kinetics of fraxetin following intravenous infusion at a rate of 150 μg per minutes for 20 minutes was also examined. Co-medication of fraxetin and valproate via iv and oral routes were employed to investigate potential drug-drug interaction. Serial blood samples (250 μL) were collected from the carotid intoheparinized 1.5 mL polythene tubes and centrifuged at 13,000 rpm for 10 min and stored frozen at -20 oC until analysis. The plasma concentrations of fraxin, fraxetin and the conjugate metabolites were determined by HPLC methods and the kinetics parameters were estimated by compartmental analysis.
    Results. The developed HPLC methods were found to be specific, precise and accurate. Calibration curves for fraxin was constructed over a range of 0.0014 – 27 μM and that of fraxetin was 0.24 – 120 μM. The lower limit of quantitation (LLOQ) for fraxin is 0.0014 μM ng/mL and that of fraxetin is 0.24 μM. The two methods were successfully applied to the pharmacokinetics of fraxin/fraxetin in rats. The disposition kinetics of fraxin in rats displayed two-compartmental characteristics, with a distribution half-life of 20 min and an elimination half-life of 120 minutes. The oral absorption of fraxin/fraxetin was rapid with a peak concentration occurred before 10 minutes. The estimated bioavailability of fraxin was 0.8% and that of fraxetin was 82 %. After iv bolus injection, plasma concentration of fraxetin declined rapidly with a short elimination half-life about 10 minutes, and two major metabolites, with high fluorescence intensity similar to fraxin, were generated. After co-administration with valproate intravenously, the AUC value of valproic acid, fraxetin and its conjugate metabolites were significantly increased. In the oral experiment group, the plasma levels of valproic acid and fraxetin were decreased and the major metabolites of fraxetin were decreased before 30 minutes.
    Conclusion. After oral administration of fraxin, it converts to fraxetin rapidly. And, fraxetin undergoes rapid and extensive conjugation metabolism to generate fraxetin glucuronide and fraxetin sulfate. Co-administration of the UGTs substrates fraxetin and valproate by intravenous route in rats resulted in a 1.5-fold increase of the AUC value of valproic acid, indicating that the elimination of valproic acid was affected by fraxetin. In the oral administration group, fraxetin significantly affected the absorption of valproic acid without altered its elimination.

    Keywords:
    fraxin,polyphenols,phase II reaction,glucuronidation,valproic acid

    目錄 第壹章 緒論 1 第一節 天然多酚類化合物 1 一、 組成及分類 1 二、 生理功能 3 三、 藥動特性 3 四、 臨床重要性 5 第二節 秦皮苷與秦皮素簡介 7 一、 自然界分布 7 二、 物化性質 7 三、 藥理活性 8 四、 秦皮苷之口服代謝途徑 9 五、 秦皮素之體外酵素代謝試驗 11 六、 秦皮苷之藥品動態 12 七、 秦皮苷之分析方法 12 第三節 第二相排除反應 14 第貳章 研究目的 18 第參章 實驗材料、儀器及方法 20 第一節 實驗材料 20 一、 實驗動物 20 二、 藥品與試劑 20 第二節 實驗儀器 21 一、 紫外光/可見光分光光度計 21 二、 螢光分光光度計 21 三、 高效能液相層析系統 21 四、 動物實驗手術及檢品處理 21 五、 繪圖及藥動分析軟體 22 第三節 實驗方法 23 一、 紫外光全光譜與螢光全光譜 23 二、 藥品配置與定量分析 23 三、 秦皮素代謝物確認試驗 26 四、 秦皮苷在大白鼠之藥物動態試驗 27 五、 實驗設計 30 六、 數據解析 32 第肆章 實驗結果 33 第一節 秦皮苷分析方法的開發與確效 33 一、 分析條件開發 33 二、 校正曲線 38 三、 確效評估 39 第二節 秦皮素分析方法的開發與確效 42 一、 分析條件開發 42 二、 校正曲線 44 三、 確效評估 45 第三節 秦皮素代謝物確認試驗 48 第四節 秦皮苷於大白鼠體內的藥品動態 50 一、 靜脈注射秦皮苷 50 二、 口服投予秦皮苷 51 第五節 秦皮素於大白鼠體內的藥品動態 54 一、 靜脈注射秦皮素 54 二、 靜脈等速輸注秦皮素 56 三、 口服投予秦皮素 57 第六節 秦皮素與valproic acid交互作用 60 一、 靜脈給予秦皮素與valproate 60 二、 口服投予秦皮素與valproate 64 伍章 討論 68 第一節 秦皮苷分析方法的開發與確效 68 第二節 秦皮素分析方法的開發與確效 69 第三節 秦皮素代謝物確認試驗 70 第四節 秦皮苷在大鼠體內藥品動態 71 第五節 秦皮素在大鼠體內藥品動態 73 第六節 秦皮素與Valproate交互作用實驗 75 一、 靜脈給予秦皮素與valproate 75 二、 口服給予秦皮素與valproate 76 第陸章 結論 78 參考文獻 79 表目錄 表1-1多酚類化合物分類與基本結構 2 表1-2多酚類化合物在各種病理生理上的作用機轉 6 表1-3口服投予大白鼠50 mg/kg秦皮苷後秦皮苷與秦皮素之藥動參數 12 表1-4秦皮苷分析方法文獻整理 13 表3-1秦皮苷液相層析方法之梯度條件 24 表4-1秦皮苷液相層析法之同日及異日間準確度與精密度之評估 40 表4-2秦皮苷血漿檢品分析方法的回收率 40 表4-3秦皮苷血漿檢品稀釋的分析方法確效 40 表4-4秦皮苷在大白鼠血漿檢品的安定性 41 表4-5秦皮素液相層析法之同日及異日間準確度與精密度之評估 46 表4-6秦皮素血漿檢品分析方法的回收率 46 表4-7秦皮素在大白鼠血漿檢品的安定性 47 表4-8靜脈投予秦皮苷於大白鼠體內之藥動參數 50 表4-9口服投予秦皮苷於大白鼠體內之藥動參數 53 表4-10靜脈投予秦皮素於大白鼠體內之藥動參數 55 表4-11靜脈等速輸注秦皮素於大白鼠體內之藥動參數 57 表4-12口服投予秦皮素於大白鼠體內之藥動參數 59 表4-13靜脈給予秦皮素與valproate於大白鼠後秦皮素之藥動參數 62 表4-14靜脈給予秦皮素與valproate於大白鼠後valproic acid之藥動參數 63 表4-15 口服投予秦皮素與valproate於大白鼠後秦皮素之藥動參數 66 表4-16口服投予秦皮素與valproate於大白鼠後valproic acid之藥動參數 67 圖目錄 圖1-1多酚類化合物sesamol 在大鼠體內血中濃度經時變化圖 4 圖1-2秦皮苷(fraxin)結構式 7 圖1-3秦皮素(fraxetin)結構式 7 圖1-4口服秦皮苷代謝途徑與其代謝物 10 圖1-5秦皮素葡萄糖醛酸反應途徑與其代謝物 11 圖1-6硫酸結合反應 16 圖1-7葡萄糖醛酸結合反應 16 圖3-1秦皮素代謝物確認試驗流程圖 26 圖4-1秦皮苷在不同pH值下的紫外光吸收光譜 33 圖4-2秦皮苷在不同pH值下之螢光發散光譜 34 圖4-3秦皮苷在不同pH值下之螢光激發光譜 35 圖4-4 pH值對秦皮苷激發及發散的螢光強度之影響 36 圖4-5大鼠的血漿檢品中秦皮苷及相關代謝物於梯度沖提的紫外光(A)及螢光(B)偵測之高效能液相層析圖譜 37 圖4-6秦皮苷之校正曲線 39 圖4-7秦皮素在不同pH值下的紫外光吸收光譜 42 圖4-8秦皮素在不同pH值下之螢光發散光譜 43 圖4-9大鼠血漿檢品中秦皮素於等位沖提的紫外光偵測之高效能液相層析圖譜 44 圖4-10秦皮素之校正曲線 45 圖4-11秦皮素代謝物經酵素水解反應之(A)螢光及(B)紫外光層析圖譜 49 圖4-12靜脈注射秦皮苷於大白鼠後秦皮苷之平均血中濃度經時變化圖 50 圖4-13口服投予秦皮苷於大白鼠後秦皮苷與代謝物之平均血中濃度經時變化圖 52 圖4-14口服投予秦皮苷後代謝物M1/M2比值經時變化圖 52 圖4-15靜脈注射秦皮素於大白鼠後其代謝物之平均血中濃度經時變化圖 55 圖4-16靜脈注射秦皮素後代謝物M1/M2比值經時變化圖 55 圖4-17靜脈等速輸注秦皮素於大白鼠後秦皮素之平均血中濃度經時變化圖 56 圖4-18口服投予秦皮素於大白鼠後秦皮素與代謝物之平均血中濃度經時變化圖 58 圖4-19口服投予秦皮素後代謝物M1/M2比值經時變化圖 58 圖4-20靜脈給予秦皮素與valproate後(A)秦皮素、(B)代謝物M1、(C)代謝物M2的血中濃度經時變化圖 62 圖4-21靜脈給予秦皮素與valproate後代謝物M1/M2比值經時變化圖 62 圖4-22靜脈給予秦皮素與valproate後valproic acid血中濃度經時變化圖 63 圖4-23口服投予秦皮素與valproate後(A)秦皮素、(B)代謝物M1、(C)代謝物M2的血中濃度經時變化圖 66 圖4-24口服投予秦皮素與valproate後代謝物M1/M2比值經時變化圖 66 圖4-25口服投予秦皮素與valproate後valproic acid的血中濃度經時變化圖 67

    Amini, H., M. Javan & A. Ahmadiani (2006) Development and validation of a sensitive assay of valproic acid in human plasma by high-performance liquid chromatography without prior derivatization. J Chromatogr B Analyt Technol Biomed Life Sci, 830, 368-71.
    Cardona, F., C. Andres-Lacueva, S. Tulipani, F. J. Tinahones & M. I. Queipo-Ortuno (2013) Benefits of polyphenols on gut microbiota and implications in human health. J Nutr Biochem, 24, 1415-22.
    Chen, X., X. Ying, W. Zhang, Y. Chen, C. Shi, Y. Hou & Y. Zhang (2013) The hepatoprotective effect of fraxetin on carbon tetrachloride induced hepatic fibrosis by antioxidative activities in rats. Int Immunopharmacol, 17, 543-7.
    Crayford, J. V. & D. H. Hutson (1980) Comparative metabolism of phenobarbitone in the rat (CFE) and mouse (CF1). Food Cosmet Toxicol, 18, 503-9.
    Eadie, M. J., W. D. Hooper & R. G. Dickinson (1988) Valproate-associated hepatotoxicity and its biochemical mechanisms. Med Toxicol Adverse Drug Exp, 3, 85-106.
    Fang, L. H., Y. Lv & G. H. Du (2008) [Progress in study of pharmacological effect of Cortex Fraxini]. Zhongguo Zhong Yao Za Zhi, 33, 2732-6.
    Farrell, T. L., M. Gomez-Juaristi, L. Poquet, K. Redeuil, K. Nagy, M. Renouf & G. Williamson (2012) Absorption of dimethoxycinnamic acid derivatives in vitro and pharmacokinetic profile in human plasma following coffee consumption. Mol Nutr Food Res, 56, 1413-23.
    Francesco, G. (2007) Interactions of Polyphenolic Compounds with Drug Disposition and Metabolism. Current Drug Metabolism, 8, 830-838.
    Jimenez-Del-Rio, M. & C. Velez-Pardo (2015) Alzheimer's Disease, Drosophila melanogaster and Polyphenols. Adv Exp Med Biol, 863, 21-53.
    Kay, C. D. (2006) Aspects of anthocyanin absorption, metabolism and pharmacokinetics in humans. Nutr Res Rev, 19, 137-46.
    Kerdpin, O., D. J. Elliot, P. I. Mackenzie & J. O. Miners (2006) Sulfinpyrazone C-glucuronidation is catalyzed selectively by human UDP-glucuronosyltransferase 1A9. Drug Metab Dispos, 34, 1950-3.
    Kiang, T. K., M. H. Ensom & T. K. Chang (2005) UDP-glucuronosyltransferases and clinical drug-drug interactions. Pharmacol Ther, 106, 97-132.
    Kimura, Y. & M. Sumiyoshi (2015) Antitumor and antimetastatic actions of dihydroxycoumarins (esculetin or fraxetin) through the inhibition of M2 macrophage differentiation in tumor-associated macrophages and/or G1 arrest in tumor cells. Eur J Pharmacol, 746, 115-25.
    Klaassen, C. D. & J. W. Boles (1997) Sulfation and sulfotransferases 5: the importance of 3'-phosphoadenosine 5'-phosphosulfate (PAPS) in the regulation of sulfation. FASEB J, 11, 404-18.
    Kursvietiene, L., I. Staneviciene, A. Mongirdiene & J. Bernatoniene (2016) Multiplicity of effects and health benefits of resveratrol. Medicina (Kaunas), 52, 148-55.
    Lewandowska, U., K. Szewczyk, E. Hrabec, A. Janecka & S. Gorlach (2013) Overview of metabolism and bioavailability enhancement of polyphenols. J Agric Food Chem, 61, 12183-99.
    Li, C., A. Chen, X. Chen, X. Ma, X. Chen & Z. Hu (2005) Non-aqueous capillary electrophoresis for separation and simultaneous determination of fraxin, esculin and esculetin in Cortex fraxini and its medicinal preparations. Biomed Chromatogr, 19, 696-702.
    Li, J. M., X. Zhang, X. Wang, Y. C. Xie & L. D. Kong (2011) Protective effects of cortex fraxini coumarines against oxonate-induced hyperuricemia and renal dysfunction in mice. Eur J Pharmacol, 666, 196-204.
    Liang, S. C., G. B. Ge, H. X. Liu, Y. Y. Zhang, L. M. Wang, J. W. Zhang, L. Yin, W. Li, Z. Z. Fang, J. J. Wu, G. H. Li & L. Yang (2010) Identification and characterization of human UDP-glucuronosyltransferases responsible for the in vitro glucuronidation of daphnetin. Drug Metab Dispos, 38, 973-80.
    Manach, C., A. Scalbert, C. Morand, C. Remesy & L. Jimenez (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr, 79, 727-47.
    Marahatta, A., B. Bhandary, S.-K. Jeong, H.-R. Kim & H.-J. Chae (2014) Soybean greatly reduces valproic acid plasma concentrations: A food–drug interaction study. Scientific Reports, 4, 4362.
    Meza-Junco, J., Q. S. Chu, O. Christensen, P. Rajagopalan, S. Das, R. Stefanyschyn & M. B. Sawyer (2009) UGT1A1 polymorphism and hyperbilirubinemia in a patient who received sorafenib. Cancer Chemother Pharmacol, 65, 1-4.
    Miners, J. O. & P. I. Mackenzie (1991) Drug glucuronidation in humans. Pharmacol Ther, 51, 347-69.
    Molina-Jimenez, M. F., M. I. Sanchez-Reus, D. Andres, M. Cascales & J. Benedi (2004) Neuroprotective effect of fraxetin and myricetin against rotenone-induced apoptosis in neuroblastoma cells. Brain Res, 1009, 9-16.
    Murali, R., S. Srinivasan & N. Ashokkumar (2013) Antihyperglycemic effect of fraxetin on hepatic key enzymes of carbohydrate metabolism in streptozotocin-induced diabetic rats. Biochimie, 95, 1848-54.
    Passamonti, S., U. Vrhovsek, A. Vanzo & F. Mattivi (2003) The stomach as a site for anthocyanins absorption from food. FEBS Lett, 544, 210-3.
    Perucca, E. (2006) Clinically relevant drug interactions with antiepileptic drugs. Br J Clin Pharmacol, 61, 246-55.
    Rehman, S. U., I. S. Kim, K. S. Kang & H. H. Yoo (2015) HPLC Determination of Esculin and Esculetin in Rat Plasma for Pharmacokinetic Studies. J Chromatogr Sci, 53, 1322-7.
    Reuter, S. & D. Mayer (1995) Transport of dehydroepiandrosterone and dehydroepiandrosterone sulphate into rat hepatocytes. J Steroid Biochem Mol Biol, 54, 227-35.
    Ritschel, W. A., M. E. Brady & H. S. Tan (1979) First-pass effect of coumarin in man. Int J Clin Pharmacol Biopharm, 17, 99-103.
    Samara, E. E., R. G. Granneman, G. F. Witt & J. H. Cavanaugh (1997) Effect of valproate on the pharmacokinetics and pharmacodynamics of lorazepam. J Clin Pharmacol, 37, 442-50.
    Sauvant, C., S. Silbernagl & M. Gekle (1998) Exposure to ochratoxin A impairs organic anion transport in proximal-tubule-derived opossum kidney cells. J Pharmacol Exp Ther, 287, 13-20.
    Siti, H. N., Y. Kamisah & J. Kamsiah (2015) The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vascul Pharmacol, 71, 40-56.
    Soobrattee, M. A., V. S. Neergheen, A. Luximon-Ramma, O. I. Aruoma & T. Bahorun (2005) Phenolics as potential antioxidant therapeutic agents: mechanism and actions. Mutat Res, 579, 200-13.
    Torii, M., Y. Takiguchi, M. Izumi, T. Fukushima & M. Yokota (2002) Carbapenem antibiotics inhibit valproic acid transport in Caco-2 cell monolayers. Int J Pharm, 233, 253-6.
    Tsao, R. (2010) Chemistry and Biochemistry of Dietary Polyphenols. Nutrients, 2, 1231-46.
    Umeno, A., M. Horie, K. Murotomi, Y. Nakajima & Y. Yoshida (2016) Antioxidative and Antidiabetic Effects of Natural Polyphenols and Isoflavones. Molecules, 21.
    Venugopala, K. N., V. Rashmi & B. Odhav (2013) Review on Natural Coumarin Lead Compounds for Their Pharmacological Activity. Biomed Res Int, 2013.
    Volak, L. P., M. J. Hanley, G. Masse, S. Hazarika, J. S. Harmatz, V. Badmaev, M. Majeed, D. J. Greenblatt & M. H. Court (2013) Effect of a herbal extract containing curcumin and piperine on midazolam, flurbiprofen and paracetamol (acetaminophen) pharmacokinetics in healthy volunteers. Br J Clin Pharmacol, 75, 450-62.
    Wang, H., B. Xiao, Z. Hao & Z. Sun (2016a) Simultaneous determination of fraxin and its metabolite, fraxetin, in rat plasma by liquid chromatography-tandem mass spectrometry and its application in a pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci, 1017-1018, 70-4.
    Wang, Y., M. Zhao, Y. Xin, J. Liu, M. Wang & C. Zhao (2016b) (1)H NMR and MS based metabolomics study of the therapeutic effect of Cortex Fraxini on hyperuricemic rats. J Ethnopharmacol, 185, 272-81.
    Whang, W. K., H. S. Park, I. Ham, M. Oh, H. Namkoong, H. K. Kim, D. W. Hwang, S. Y. Hur, T. E. Kim, Y. G. Park, J. R. Kim & J. W. Kim (2005) Natural compounds,fraxin and chemicals structurally related to fraxin protect cells from oxidative stress. Exp Mol Med, 37, 436-46.
    Williams, J. A., R. Hyland, B. C. Jones, D. A. Smith, S. Hurst, T. C. Goosen, V. Peterkin, J. R. Koup & S. E. Ball (2004) Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos, 32, 1201-8.
    Wu, C.-R., M.-Y. Huang, Y.-T. Lin, H.-Y. Ju & H. Ching (2007) Antioxidant properties of Cortex Fraxini and its simple coumarins. Food Chemistry, 104, 1464-1471.
    Xia, Y. L., S. C. Liang, L. L. Zhu, G. B. Ge, G. Y. He, J. Ning, X. Lv, X. C. Ma, L. Yang & S. L. Yang (2014) Identification and characterization of human UDP-glucuronosyltransferases responsible for the glucuronidation of fraxetin. Drug Metab Pharmacokinet, 29, 135-40.
    Yasuda, T., M. Fukui, T. Nakazawa, A. Hoshikawa & K. Ohsawa (2006) Metabolic fate of fraxin administered orally to rats. J Nat Prod, 69, 755-7.
    Zamek-Gliszczynski, M. J., K. A. Hoffmaster, K. Nezasa, M. N. Tallman & K. L. Brouwer (2006) Integration of hepatic drug transporters and phase II metabolizing enzymes: mechanisms of hepatic excretion of sulfate, glucuronide, and glutathione metabolites. Eur J Pharm Sci, 27, 447-86.
    Zhang, X. S., Z. Q. Zhao, Z. S. Qin, K. Wu, T. F. Xia & L. Q. Pang (2015) Herb-drug interaction between irinotecan and psoralidin-containing herbs. Eur J Drug Metab Pharmacokinet, 40, 481-4.
    Zhao, M., W. Ding, S. Wang, M. Gao, S. Fu, J. Zhang, T. Li, Y. Wu & Q. Wang (2015) Simultaneous determination of five constituents in Qinpijiegu capsule by high-performance liquid chromatography coupled with tandem mass spectrometry. J Chromatogr Sci, 53, 274-9.
    Zhao, M., W. Ding, S. Wang, C. Wang, Y. Du, H. Xu, Q. Wang & S. Jin (2016) Simultaneous determination of nine coumarins in rat plasma by HPLC-MS/MS for pharmacokinetics studies following oral administration of Fraxini Cortex extract. J Chromatogr B Analyt Technol Biomed Life Sci, 1025, 25-32.
    Zhou, L., J. Kang, L. Fan, X. C. Ma, H. Y. Zhao, J. Han, B. R. Wang & D. A. Guo (2008) Simultaneous analysis of coumarins and secoiridoids in Cortex Fraxini by high-performance liquid chromatography-diode array detection-electrospray ionization tandem mass spectrometry. J Pharm Biomed Anal, 47, 39-46.
    于逸筑 (2009) 芝麻酚在大白鼠體內藥物動力學與交互作用. 國立成功大學臨床藥學所98級碩士論文.

    無法下載圖示 校內:2021-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE